Atnaujinkite slapukų nuostatas

El. knyga: Big Data Factories: Collaborative Approaches

Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Computational Social Sciences
  • Išleidimo metai: 27-Nov-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319591865
  • Formatas: EPUB+DRM
  • Serija: Computational Social Sciences
  • Išleidimo metai: 27-Nov-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319591865

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing.

The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools.

Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it.

Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com
1 Introduction
1(8)
Nicolas Jullien
Sorin Adam Matei
Sean P. Goggins
Part I Theoretical Principles and Approaches to Data Factories
2 Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration
9(14)
Libby Hemphill
Susan T. Jackson
3 The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science
23(16)
Sean P. Goggins
A.J. Million
Georg J. P. Link
Matt Germonprez
Kristen Schuster
Part II Theoretical Principles and Ideas for Designing and Deploying Data Factory Approaches
4 Levels of Trace Data for Social and Behavioural Science Research
39(12)
Kevin Crowston
5 The Ten Adoption Drivers of Open Source Software That Enables e-Research in Data Factories for Open Innovations
51(16)
Kerk F. Kee
6 Aligning Online Social Collaboration Data Around Social Order: Theoretical Considerations and Measures
67(12)
Sorin Adam Matei
Brian C. Britt
Part III Approaches in Action Through Case Studies of Data Based Research, Best Practice Scenarios, or Educational Briefs
7 Lessons Learned from a Decade of FLOSS Data Collection
79(22)
Kevin Crowston
Megan Squire
8 Teaching Students How (Not) to Lie, Manipulate, and Mislead with Information Visualization
101(14)
Athir Mahmud
Mel Hogan
Andrea Zeffiro
Libby Hemphill
9 Democratizing Data Science: The Community Data Science Workshops and Classes
115(22)
Benjamin Mako Hill
Dharma Dailey
Richard T. Guy
Ben Lewis
Mika Matsuzaki
Jonathan T. Morgan
Index 137
Sorin Matei is a Professor at Brian Lamb School of Communication at Purdue University.  His focus areas are computational social science, collaborative content production, and data storytelling. Nicolas Jullien is an Associate Professor at the LUSSI Department of Telecom Bretagne.  His research interests are in open and online communities. Sean Patrick Goggins is an Associate Professor at Missouri's iSchool, with courtesy appointments as core faculty in the University of Missouri's Informatics Institute and Department of Computer Science.