Atnaujinkite slapukų nuostatas

El. knyga: Big Data Management And Analytics

(National Institute Of Technology Kurukshetra, India), (Punjab Engineering College, Chandigarh, India)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"With the proliferation of information, big data management and analysis have become an indispensable part of any system to handle such amounts of data. The amount of data generated by the multitude of interconnected devices increases exponentially, making the storage and processing of these data a real challenge. Big data management and analytics have gained momentum in almost every industry, ranging from finance or healthcare. Big data can reveal key insights if handled and analyzed properly; it has great application potential to improve the working of any industry. This book covers the spectrum aspects of big data; from the preliminary level to specific case studies. It will help readers gain knowledge of the big data landscape. Highlights of the topics covered include description of the Big Data ecosystem; real-world instances of big data issues; how the Vs of Big Data (volume, velocity, variety, veracity, valence, and value) affect data collection, monitoring, storage, analysis, and reporting; structural process to get value out of Big Data and recognize the differences between a standard database management system and a big data management system. Readers will gain insights into choice of data models, data extraction, data integration to solve large data problems, data modelling using machine learning techniques, Spark's scalable machine learning techniques, modeling a big data problem into a graph database and performing scalable analytical operations over the graph and different tools and techniques for processing big data and its applications including in healthcare and finance"--

With The Proliferation Of Information, Big Data Management And Analysis Have Become An Indispensable Part Of Any System To Handle Such Amounts Of Data. The Amount Of Data Generated By The Multitude Of Interconnected Devices Increases Exponentially, Making The Storage And Processing Of These Data A Real Challenge. Big Data Management And Analytics Have Gained Momentum In Almost Every Industry, Ranging From Finance Or Healthcare. Big Data Can Reveal Key Insights If Handled And Analyzed Properly; It Has Great Application Potential To Improve The Working Of Any Industry. This Book Covers The Spectrum Aspects Of Big Data; From The Preliminary Level To Specific Case Studies. It Will Help Readers Gain Knowledge Of The Big Data Landscape. Highlights Of The Topics Covered Include Description Of The Big Data Ecosystem; Real-World Instances Of Big Data Issues; How The Vs Of Big Data (Volume, Velocity, Variety, Veracity, Valence, And Value) Affect Data Collection, Monitoring, Storage, Analysis, And Reporting; Structural Process To Get Value Out Of Big Data And Recognize The Differences Between A Standard Database Management System And A Big Data Management System. Readers Will Gain Insights Into Choice Of Data Models, Data Extraction, Data Integration To Solve Large Data Problems, Data Modelling Using Machine Learning Techniques, Spark'S Scalable Machine Learning Techniques, Modeling A Big Data Problem Into A Graph Database And Performing Scalable Analytical Operations Over The Graph And Different Tools And Techniques For Processing Big Data And Its Applications Including In Healthcare And Finance.