neleidžiama
neleidžiama
Skaitmeninių teisių valdymas (DRM)
Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).
Reikalinga programinė įranga
Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)
Norint skaityti šią el. knygą asmeniniame arba Mac kompiuteryje, Jums reikalinga Adobe Digital Editions (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas Adobe Reader, kurią tikriausiai jau turite savo kompiuteryje.)
Negalite skaityti šios el. knygos naudodami Amazon Kindle.
1. Distributed and Parallel Computing.
2. GEOSS Clearinghouse: Integrating Geospatial Resources to Support the Global Earth Observation System of Systems.
3. Using a Cloud Computing Environment to Process Large 3D Spatial Datasets.
4. Building Open Environments to Meet Big Data Challenges in Earth Sciences.
5. Developing Online Visualization and Analysis Services for NASA Satellite-Derived Global Precipitation Products during the Big Geospatial Data Era.
6. Algorithmic Design Considerations for Geospatial and/or Temporal Big Data.
7. Machine Learning on Geospatial Big Data.
8. Spatial Big Data: Case Studies on Volume, Velocity, and Variety.
9. Exploiting Big VGI to Improve Routing and Navigation Services.
10. Efficient Frequent Sequence Mining on Taxi Trip Records Using Road Network Shortcuts.
11. Geoinformatics and Social Media: New Big Data Challenge.
12. Insights and Knowledge Discovery from Big Geospatial Data Using TMC-Pattern.
13. Geospatial Cyberinfrastructure for Addressing the Big Data Challenges on the Worldwide Sensor Web.
14. OGC Standards and Geospatial Big Data.
15. Advanced Deep Learning Models and Algorithms for Spatial-Temporal Data.
16. Deep Learning for Spatial Data: Heterogeneity and Adaptation.
17. Assessing Multilevel Environmental and Air Quality Changes in Australia Pre and Post COVID-19 Lockdown: A Spatial Machine Learning Approach Utilizing Earth Observation Data.
18. Fairness-aware Deep Learning in Space.
19. Integrating Large Language Models and Qualitative Spatial Reasoning.
20. Towards a Spatial Metaverse: Building Immersive Virtual Experiences with Georeferenced Digital Twin and Game Engine.
21. A Topological Machine Learning Approach with Multichannel Integration for Detecting Geospatial Objects.