Atnaujinkite slapukų nuostatas

Big Scientific Data Management: First International Conference, BigSDM 2018, Beijing, China, November 30 December 1, 2018, Revised Selected Papers 2019 ed. [Minkštas viršelis]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: Paperback / softback, 332 pages, aukštis x plotis: 235x155 mm, weight: 534 g, 113 Illustrations, color; 59 Illustrations, black and white; XIII, 332 p. 172 illus., 113 illus. in color., 1 Paperback / softback
  • Serija: Lecture Notes in Computer Science 11473
  • Išleidimo metai: 07-Aug-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030280608
  • ISBN-13: 9783030280604
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 332 pages, aukštis x plotis: 235x155 mm, weight: 534 g, 113 Illustrations, color; 59 Illustrations, black and white; XIII, 332 p. 172 illus., 113 illus. in color., 1 Paperback / softback
  • Serija: Lecture Notes in Computer Science 11473
  • Išleidimo metai: 07-Aug-2019
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030280608
  • ISBN-13: 9783030280604
Kitos knygos pagal šią temą:
This book constitutes the refereed proceedings of the First International Conference on Big Scientific Data Management, BigSDM 2018, held in Beijing, Greece, in November/December 2018.





The 24 full papers presented together with 7 short papers were carefully reviewed and selected from 86 submissions. The topics involved application cases in the big scientific data management, paradigms for enhancing scientific discovery through big data, data management challenges posed by big scientific data, machine learning methods to facilitate scientific discovery, science platforms and storage systems for large scale scientific applications, data cleansing and quality assurance of science data, and data policies.

Application cases in the big scientific data management.- Paradigms for enhancing scientific discovery through big data.- Data management challenges posed by big scientific data.- Machine learning methods to facilitate scientific discovery.- Science platforms and storage systems for large scale scientific applications.- Data cleansing and quality assurance of science data.- Data policies.