Atnaujinkite slapukų nuostatas

El. knyga: Bimonoids for Hyperplane Arrangements

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the BorelHopf, PoincaréBirkhoffWitt, and CartierMilnorMoore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.

Daugiau informacijos

Develops a new theory, parallel to the classical theory of connected Hopf algebras, including a real hyperplane arrangement.
Preface xi
Introduction 1(16)
Part I Species and operads
17(188)
Chapter 1 Hyperplane arrangements
19(54)
1.1 Faces, bifaces, flats
19(6)
1.2 Nested faces and lunes
25(2)
1.3 Partial-flats
27(2)
1.4 Minimal galleries, distance functions, Varchenko matrices
29(5)
1.5 Incidence algebras, and zeta and Mobius functions
34(6)
1.6 Bilune-incidence algebra
40(6)
1.7 Descent, lune, Witt identities
46(3)
1.8 Noncommutative Zaslavsky formula
49(3)
1.9 Birkhoff algebra, Tits algebra, Janus algebra
52(10)
1.10 Takeuchi element
62(2)
1.11 Orientation space and signature space
64(2)
1.12 Lie and Zie elements
66(4)
1.13 Braid arrangement
70(1)
Notes
71(2)
Chapter 2 Species and bimonoids
73(61)
2.1 Species
74(3)
2.2 Monoids, comonoids. bimonoids
77(4)
2.3 (Co)commutative (co)monoids
81(7)
2.4 Deformed bimonoids and signed bimonoids
88(3)
2.5 Signed (co)commutative (co)monoids
91(3)
2.6 Subspecies and quotient species
94(2)
2.7 (Co)abelianizations of (co)monoids
96(3)
2.8 Generating subspecies of monoids
99(1)
2.9 Duality functor on species
100(2)
2.10 Op and cop constructions
102(3)
2.11 Monoids, comonoids, bimonoids as functor categories
105(8)
2.12 Presentation for (co)monoids using covering generators
113(5)
2.13 Partially commutative monoids
118(3)
2.14 Set-species and set-bimonoids
121(2)
2.15 Bimonoids for a rank-one arrangement
123(1)
2.16 Joyal species and Joyal bimonoids
124(3)
Notes
127(7)
Chapter 3 Bimonads on species
134(34)
3.1 Bimonoids as bialgebras over a bimonad
135(5)
3.2 Bicommutative bimonoids as bialgebras over a bimonad
140(5)
3.3 Duality as a bilax functor
145(2)
3.4 Opposite transformation
147(3)
3.5 Lifting of monads to comonoids
150(1)
3.6 Monad for partially commutative monoids
151(3)
3.7 Bimonad for set-species
154(4)
3.8 Symmetries, braidings, lax braidings
158(4)
3.9 LRB species
162(2)
3.10 Mesablishvili-Wisbauer
164(3)
Notes
167(1)
Chapter 4 Operads
168(37)
4.1 Dispecies
169(1)
4.2 Operads
170(4)
4.3 Set-operads
174(1)
4.4 Connected and positive operads
175(1)
4.5 Commutative, associative, Lie operads
176(2)
4.6 May operads
178(1)
4.7 Hadamard product. Hopf operads
179(2)
4.8 Orientation functor and signature functor
181(1)
4.9 Operad presentations
182(5)
4.10 Black and white circle products
187(3)
4.11 Left modules over operads
190(6)
4.12 Bioperads. Mixed distributive laws
196(3)
4.13 Incidence algebra of an operad
199(3)
4.14 Operads for LRB species
202(1)
Notes
203(2)
Part II Basic theory of bimonoids
205(324)
Chapter 5 Primitive nitrations and decomposable nitrations
207(28)
5.1 Cauchy powers of a species
208(3)
5.2 Graded and filtered bimonoids
211(3)
5.3 Primitive nitrations of comonoids
214(4)
5.4 Decomposable nitrations of monoids
218(3)
5.5 Trivial (co)monoids and (co)derivations
221(1)
5.6 Bimonoid axiom on the primitive part
222(4)
5.7 Primitively generated bimonoids and cocommutativity
226(3)
5.8 Browder-Sweedler and Milnor-Moore
229(3)
Notes
232(3)
Chapter 6 Universal constructions
235(48)
6.1 Free monoids on species
236(4)
6.2 Cofree comonoids on species
240(3)
6.3 (Co)free (co)commutative (co)monoids on species
243(7)
6.4 (Co)free bimonoids associated to species
250(5)
6.5 (Co)free (co)commutative bimonoids associated to species
255(4)
6.6 (Co)abelianizations of (co)free (co)monoids
259(2)
6.7 Primitive nitrations and decomposable nitrations
261(2)
6.8 Alternative descriptions of bimonoids
263(2)
6.9 Norm transformation
265(5)
6.10 (Co)free graded (co)monoids on species
270(5)
6.11 Free partially bicommutative bimonoids
275(2)
Notes
277(6)
Chapter 7 Examples of bimonoids
283(52)
7.1 Species characteristic of chambers
284(1)
7.2 Exponential species
285(3)
7.3 Species of chambers
288(6)
7.4 Species of flats
294(4)
7.5 Species of charts and dicharts
298(3)
7.6 Species of faces
301(11)
7.7 Species of top-nested faces and top-lunes
312(8)
7.8 Species of bifaces
320(6)
7.9 Lie and Zie species
326(4)
Notes
330(5)
Chapter 8 Hadamard product
335(49)
8.1 Hadamard functor
336(6)
8.2 Internal horn for the Hadamard product
342(1)
8.3 Biconvolution bimonoids
343(4)
8.4 Internal horn for comonoids. Bimonoid of star families
347(8)
8.5 Species of chamber maps
355(3)
8.6 Universal measuring comonoids
358(5)
8.7 Enrichment of the category of monoids over comonoids
363(4)
8.8 Internal horn for monoids and bimonoids
367(8)
8.9 Hadamard product of set-species
375(1)
8.10 Signature functor
376(5)
Notes
381(3)
Chapter 9 Exponential and logarithm
384(58)
9.1 Exp-log correspondences
386(10)
9.2 Commutative exp-log correspondence
396(12)
9.3 Deformed exp-log correspondences
408(11)
9.4 0-exp-log correspondence
419(3)
9.5 Primitive and group-like series of bimonoids
422(5)
9.6 Primitive and group-like series of bicomm. bimonoids
427(4)
9.7 Comparisons between exp-log correspondences
431(2)
9.8 Formal power series. Series of Joyal species
433(6)
Notes
439(3)
Chapter 10 Characteristic operations
442(27)
10.1 Characteristic operations
443(9)
10.2 Commutative? characteristic operations
452(5)
10.3 Two-sided characteristic operations
457(2)
10.4 Set-theoretic characteristic operations
459(1)
10.5 Idempotent operators on bimonoid components
460(7)
Notes
467(2)
Chapter 11 Modules over monoid algebras and bimonoids in species
469(26)
11.1 Modules over the Tits algebra
470(2)
11.2 Modules over the Birkhoff algebra
472(1)
11.3 Modules over the Janus algebra
472(2)
11.4 Examples
474(2)
11.5 Duality and base change
476(3)
11.6 Signed analogues
479(1)
11.7 A unified viewpoint via partial-biflats
480(1)
11.8 Karoubi envelopes
481(4)
11.9 Monoid-sets and bimonoids in set-species
485(1)
11.10 Bimonoids of h-faces and h-flats
486(7)
Notes
493(2)
Chapter 12 Antipode
495(34)
12.1 Takeuchi formula
495(4)
12.2 Interaction with op and cop constructions
499(4)
12.3 Commutative Takeuchi formula
503(2)
12.4 Logarithm of the antipode
505(2)
12.5 Examples
507(5)
12.6 Antipodes of (co)free bimonoids
512(3)
12.7 Antipodes of (co)free (co)commutative bimonoids
515(3)
12.8 Takeuchi element and characteristic operations
518(5)
12.9 Set-bimonoids
523(2)
Notes
525(4)
Part III Structure theory for bimonoids
529(188)
Chapter 13 Loday-Ronco, Leray-Samelson, Borel-Hopf
531(44)
13.1 Loday-Ronco for 0-bimonoids
534(4)
13.2 Leray-Samelson for bicommutative bimonoids
538(8)
13.3 Borel-Hopf for cocommutative bimonoids
546(10)
13.4 Borel-Hopf for commutative bimonoids
556(4)
13.5 Unification using partially bicommutative bimonoids
560(2)
13.6 Rigidity of q-bimonoids for q not a root of unity
562(8)
13.7 Monad for Lie monoids
570(1)
Notes
571(4)
Chapter 14 Hoffman-Newman-Radford
575(34)
14.1 Free O-bimonoids on comonoids
576(4)
14.2 Free bicomm. bimonoids on cocomm. comonoids
580(7)
14.3 Free O-~-bicommutative bimonoids
587(1)
14.4 Free bimonoids on cocommutative comonoids
588(9)
14.5 Free a-bimonoids on comonoids
597(8)
14.6 Zeta and Mobius as inverses
605(2)
Notes
607(2)
Chapter 15 Freeness under Hadamard products
609(29)
15.1 Freeness under Hadamard products
609(4)
15.2 Product of free and cofree bimonoids
613(10)
15.3 Product of free comm. and cofree cocomm. bimonoids
623(4)
15.4 Product of bimonoids with one free factor
627(2)
15.5 Species of pairs of chambers
629(7)
Notes
636(2)
Chapter 16 Lie monoids
638(40)
16.1 Lie monoids
639(3)
16.2 Commutator bracket and primitive part of bimonoids
642(3)
16.3 Free Lie monoids on species
645(3)
16.4 Lie species and Zie species as Lie monoids
648(1)
16.5 Universal enveloping monoids
649(10)
16.6 Abelian Lie monoids
659(1)
16.7 Signed Lie monoids
660(4)
16.8 Lie comonoids
664(7)
Notes
671(7)
Chapter 17 Poincare-Birkhoff-Witt and Cartier-Milnor-Moore
678(39)
17.1 Comonoid sections to the abelianization map
679(3)
17.2 Poincare-Birkhoff-Witt
682(5)
17.3 Projecting the free monoid onto the free Lie monoid
687(5)
17.4 Solomon operator
692(6)
17.5 Cartier-Milnor-Moore
698(5)
17.6 Lie monoids for a rank-one arrangement
703(3)
17.7 Joyal Lie monoids
706(4)
17.8 Lie monoids in LRB species
710(1)
Notes
711(6)
Appendices
717(46)
Appendix A Vector spaces
719(4)
A.1 Kernel, cokernel, image, coimage
719(1)
A.2 Duality functor on vector spaces
719(1)
A.3 Internal hom for the tensor product
720(1)
A.4 Linear maps between direct sums of vector spaces
720(1)
A.5 Idempotent operators
721(2)
Appendix B Internal horn for monoidal categories
723(15)
B.1 Monoidal and 2-monoidal categories
723(2)
B.2 Internal horn
725(3)
B.3 Powers and copowers
728(2)
B.4 Internal horn for functor categories
730(3)
B.5 Modules over a monoid algebra
733(2)
Notes
735(3)
Appendix C Higher monads
738(25)
C.1 Higher monads
738(14)
C.2 Higher monad algebras
752(6)
C.3 Adjunctions
758(2)
Notes
760(3)
References 763(39)
List of Notations 802(10)
List of Tables 812(2)
Author Index 814(9)
Subject Index 823
Marcelo Aguiar is Professor in the Department of Mathematics at Cornell University, New York. Swapneel Mahajan is Associate Professor in the Department of Mathematics at the Indian Institute of Technology, Bombay.