Atnaujinkite slapukų nuostatas

El. knyga: Binomial Ideals

  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 279
  • Išleidimo metai: 28-Sep-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319953496
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 279
  • Išleidimo metai: 28-Sep-2018
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319953496
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals.  In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas of mathematics.   The book begins with a brief, self-contained overview of the modern theory of Gröbner bases and the necessary algebraic and homological concepts from commutative algebra.  Binomials and binomial ideals are then considered in detail, along with a short introduction to convex polytopes.  Chapters in the remainder of the text can be read independently and explore specific aspects of the theory of binomial ideals, including edge rings and edge polytopes, join-meet ideals of finite lattices, binomial edge ideals, ideals generated by 2-minors, and binomial ideals arising from statistics.  Each chapter concludes with a set of exercises and a list of related topics and results that will complement and offer a better understanding of the material presented. Binomial Ideals is suitable for graduate students in courses on commutative algebra, algebraic combinatorics, and statistics.  Additionally, researchers interested in any of these areas but familiar with only the basic facts of commutative algebra will find it to be a valuable resource.

Recenzijos

This is a valuable resource for students and researchers entering this area of combinatorial commutative algebra. (Thomas Kahle, Mathematical Reviews, November, 2019)

Part I Basic Concepts
1 Polynomial Rings and Grobner Bases
3(32)
1.1 Dickson's Lemma and Grobner Bases
3(12)
1.2 The Division Algorithm
15(4)
1.3 Buchberger's Criterion
19(9)
1.4 Elimination
28(5)
1.5 Universal Grobner Bases
33(2)
Notes
34(1)
2 Review of Commutative Algebra
35(26)
2.1 Graded Rings and Hilbert Functions
35(4)
2.2 Finite Free Resolutions
39(5)
2.3 Dimension and Depth
44(5)
2.4 Infinite Free Resolutions and Koszul Algebras
49(12)
Notes
58(3)
Part II Binomial Ideals and Convex Polytopes
3 Introduction to Binomial Ideals
61(26)
3.1 Toric Ideals and Binomial Ideals
61(5)
3.2 Grobner Bases of Binomial Ideals
66(7)
3.3 Lattice Ideals and Lattice Basis Ideals
73(3)
3.4 Lawrence Ideals
76(5)
3.5 The Squarefree Divisor Complex
81(6)
Notes
86(1)
4 Convex Polytopes and Unimodular Triangulations
87(30)
4.1 Foundations on Convex Polytopes
87(3)
4.1.1 Convex Sets
87(1)
4.1.2 Convex Polytopes
88(1)
4.1.3 Faces
88(1)
4.1.4 f-Vectors
89(1)
4.1.5 Simplicial Polytopes
89(1)
4.2 Normal Polytopes and Unimodular Triangulations
90(17)
4.2.1 Integral Polytopes
90(1)
4.2.2 Integer Decomposition Property
91(1)
4.2.3 Normal Polytopes
91(2)
4.2.4 Triangulations and Coverings
93(3)
4.2.5 Regular Triangulations
96(11)
4.3 Unimodular Polytopes
107(10)
Notes
113(4)
Part III Applications in Combinatorics and Statistics
5 Edge Polytopes and Edge Rings
117(24)
5.1 Finite Graphs
117(3)
5.2 Edge Polytopes of Finite Graphs
120(3)
5.3 Toric Ideals of Edge Rings
123(8)
5.4 Normality and Unimodular Coverings of Edge Polytopes
131(5)
5.5 Koszul Bipartite Graphs
136(5)
Notes
139(2)
6 Join-Meet Ideals of Finite Lattices
141(30)
6.1 Review on Classical Lattice Theory
141(9)
6.2 Grobner Bases of Join-Meet Ideals
150(4)
6.3 Join-Meet Ideals of Modular Non-distributive Lattices
154(5)
6.4 Join-Meet Ideals of Planar Distributive Lattices
159(5)
6.5 Projective Dimension and Regularity of Join-Meet Ideals
164(7)
Notes
169(2)
7 Binomial Edge Ideals and Related Ideals
171(68)
7.1 Binomial Edge Ideals and Their Grobner Bases
171(13)
7.1.1 Closed Graphs
172(7)
7.1.2 The Computation of the Grobner Basis
179(5)
7.2 Primary Decomposition of Binomial Edge Ideals and Cohen-Macaulayness
184(10)
7.2.1 Primary Decomposition
185(5)
7.2.2 Cohen-Macaulay Binomial Edge Ideals
190(4)
7.3 On the Regularity of Binomial Edge Ideals
194(14)
7.3.1 Binomial Edge Ideals with Linear Resolution
194(2)
7.3.2 A Lower Bound for the Regularity
196(4)
7.3.3 An Upper Bound for the Regularity
200(8)
7.4 Koszul Binomial Edge Ideals
208(13)
7.4.1 Koszul Graphs
209(6)
7.4.2 Koszul Flags and Koszul Filtrations for Closed Graphs
215(6)
7.5 Permanental Edge Ideals and Lovasz-Saks-Schrijver Ideals
221(18)
7.5.1 The Lovasz---Saks--Schrijver Ideal LG
221(3)
7.5.2 The Ideals IKn and IKm,n-m
224(5)
7.5.3 The Minimal Prime Ideals of LG When √-1 εK
229(8)
Notes
237(2)
8 Ideals Generated by 2-Minors
239(32)
8.1 Configurations of Adjacent 2-Minors
239(14)
8.1.1 Prime Configurations of Adjacent 2-Minors
240(4)
8.1.2 Configurations of Adjacent 2-Minors with Quadratic Grobner Basis
244(3)
8.1.3 Minimal Prime Ideals of Convex Configurations of Adjacent 2-Minors
247(5)
8.1.4 Strongly Connected Configurations Which Are Radical
252(1)
8.2 Polyominoes
253(18)
8.2.1 Balanced Polyominoes
254(4)
8.2.2 Simple Polyominoes
258(9)
8.2.3 A Toric Presentation of Simple Polyominoes
267(3)
Notes
270(1)
9 Statistics
271(36)
9.1 Basic Concepts of Statistics (2-Way Case)
271(5)
9.2 Markov Bases for m-Way Contingency Tables
276(5)
9.3 Sequential Importance Sampling and Normality of Toric Rings
281(3)
9.4 Toric Rings and Ideals of Hierarchical Models
284(15)
9.4.1 Decomposable Graphical Models
287(5)
9.4.2 No w-Way Interaction Models and Higher Lawrence Liftings
292(7)
9.5 Segre-Veronese Configurations
299(8)
Notes
304(3)
References 307(10)
Index 317
Jürgen Herzon is a professor at the University of Duisburg-Essen and coauthor of Monomial Ideals (2011) with Takayuki Hibi. Takayuki Hibi is a professor at Osaka University. Hidefumi Ohsugi is a professor at Rikkyo University.