Atnaujinkite slapukų nuostatas

Bioeffects and Therapeutic Applications of Electromagnetic Energy [Kietas viršelis]

  • Formatas: Hardback, 400 pages, aukštis x plotis: 234x156 mm, weight: 748 g
  • Išleidimo metai: 19-Nov-2007
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1420062840
  • ISBN-13: 9781420062847
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 400 pages, aukštis x plotis: 234x156 mm, weight: 748 g
  • Išleidimo metai: 19-Nov-2007
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1420062840
  • ISBN-13: 9781420062847
Kitos knygos pagal šią temą:
From cell phones to treating cancer, EM energy plays a part in many of the innovations that we take for granted everyday. A basic force of nature, like nuclear energy or gravity, this energy can be harnessed and used, but still holds the potential to be harmful. The question remains, how safe are EM products? Bioeffects and Therapeutic Applications of Electromagnetic Energy provides a review of cutting-edge research in EM health effects and EM therapy along with emerging areas of bioengineering and biomedical engineering. The book allows you to

·         Understand the necessary EM theory in the context of its interaction with the human body

·         Review cutting-edge research on EM health effects and EM therapy

·         Explore techniques developed to ensure adequate EM and thermal dosimetry required for health effects and thermal therapy

·         Strengthen your understanding of the rapidly emerging areas of bioengineering and biomedical engineering

Taking a transdisciplinary approach drawn from several intellectual streams that include physics, epidemiology, medicine, environment, risk assessment, and various disciplines of engineering, this book ventures into the conflicting studies to access research on bioeffects and therapeutic applications of EM energy. It is the only resource currently available that covers bioeffects and risk assessment of both extremely low frequency (ELF) fields and radiofrequency radiation (RFR) along with the recent developments in thermal therapy and imaging techniques.
Preface xvii
Acknowledgments xix
Chapter 1 Fundamental Concepts in Electromagnetics 1
1.1 Introduction
1
1.2 Fields
1
1.2.1 Electric Fields
2
1.2.2 Magnetic Fields
3
1.2.3 Electromagnetic Fields
6
1.2.4 Electromagnetic Waves
7
1.3 Electromagnetic Induction
10
1.4 Electromagnetic Energy
12
1.5 Electromagnetic Spectrum
12
1.6 Sources of Electric and Magnetic Fields
14
1.6.1 DC Sources
14
1.6.1.1 Magnetosphere
15
1.6.1.2 Magnetic Resonance Imaging
16
1.6.1.3 DC Power Supply System
16
1.6.2 AC Sources
17
1.6.2.1 Single-Conductor Source
17
1.6.2.2 Dual-Conductor Source
18
1.6.2.3 Loop Source
18
1.6.2.4 Three-Phase Source
19
1.7 Sources of Radiofrequency Radiation
19
1.7.1 Generators
21
1.7.2 Transmission Paths
21
1.7.2.1 Transmission Lines
21
1.7.2.2 Coaxial Cables
22
1.7.2.3 Waveguides
22
1.7.3 Antennas
23
1.7.3.1 Antenna Properties
23
1.7.3.2 Types of Antennas
25
References
27
Chapter 2 Electromagnetic Interactions with Biological Systems 29
2.1 Introduction
29
2.2 Interaction Mechanisms
30
2.2.1 Mechanisms for Electric and Magnetic Fields
30
2.2.1.1 Induced Fields and Currents
30
2.2.1.2 Thermal Noise
31
2.2.1.3 Shot Noise
32
2.2.1.4 Endogenous Fields
32
2.2.2 Mechanisms for Radio Frequency Radiation
32
2.2.2.1 Thermal Mechanisms
32
2.2.2.2 Nonthermal/Athermal Interaction Mechanisms
33
2.3 Electric Field Effects
34
2.3.1 Polarization of Bound Charges
34
2.3.2 Orientation of Permanent Electric Dipoles
35
2.3.3 Drift of Conduction Charges
35
2.3.4 Pearl-Chain Effects and Electrorotation
35
2.4 Magnetic Field Effects
36
2.4.1 Induced Currents
36
2.4.2 Magnetic Biosubstances
37
2.4.3 Radical Pairs
38
2.4.4 Cell Membrane and the Chemical Link
38
2.4.5 Summary of ELF Interaction Mechanisms
39
2.5 Biological and Health Effects
39
2.5.1 Cells and Membranes
39
2.5.2 Tissues
41
2.5.3 Changes in Protein Conformation
42
2.5.4 Changes in Binding Probability
42
2.5.5 Absorption of Vibrational States of Biological Components
43
2.5.6 Genetic Material
43
2.5.7 Garcinogenesis
44
2.5.8 Hypothesis of Melatonin
45
2.5.9 Cancer Mechanisms
46
2.5.10 Brain and Nervous System.
47
2.5.10.1 Brain
48
2.5.10.2 Physiological Effects
49
2.6 Energy and Frequency
50
2.6.1 Effect of Frequency
50
2.6.2 Low-Frequency Fields from Demodulation
50
2.7 Concluding Remarks
51
References
52
PART I Health Risks of Electromagnetic Energy
Chapter 3 Guidelines and Measurement for Hectic and Magnetic Fields
59
3.1 Introduction
59
3.2 Exposure Guidelines
60
3.2.1 Institute of Electrical and Electronics Engineers
61
3.2.2 National Radiological Protection Board
62
3.2.3 International Commission on Nonionizing Radiation Protection
62
3.2.4 Swedish Standards
63
3.2.5 Restrictions
63
3.3 Measurement Techniques
63
3.3.1 Frequency and Object Size
63
3.3.2 Electric Field Measurements
64
3.3.3 Magnetic Field Measurements
65
3.3.4 Simplified Meters
66
3.4 Measurement Surveys
67
3.4.1 Sources of EMF Exposure
68
3.4.1.1 Residential Areas
68
3.4.1.2 Power Lines and Cables
68
3.4.2 Site Surveys
69
3.4.3 Electric Appliances
69
3.5 Dosimetry
72
3.6 Field Management
73
3.6.1 Mitigation Techniques for Power Lines
73
3.6.1.1 Underground Cables
73
3.6.1.2 Rights of Way
74
3.6.1.3 Cancellation Techniques
74
3.6.2 Reducing the Level of ELF Exposure
74
3.6.3 Mitigation of Electric Fields
75
3.6.4 Mitigation of Magnetic Fields
75
3.6.4.1 Passive Shielding Techniques
76
3.6.4.2 Active Shielding Techniques
77
3.6.5 Protection from VDTs
77
References
78
Chapter 4 Bioeffects of Electric and Magnetic Fields
83
4.1 Introduction
83
4.2 Epidemiological Studies
83
4.2.1 Public Environments
84
4.2.1.1 Childhood Cancer and Leukemia
85
4.2.1.2 Breast Cancer
86
4.2.2 Occupational Environments
87
4.2.2.1 Adult Cancers
87
4.2.2.2 Cardiovascular Diseases
91
4.2.2.3 Neurodegenerative Diseases
91
4.2.2.4 Reproductive Toxic Effects
92
4.2.3 Summary of Epidemiological Studies
94
4.3 Cellular and Animal Studies
94
4.3.1 Melatonin Hypothesis
94
4.3.2 Genotoxicity and Carcinogenicity
95
4.3.3 Cell Functions
96
4.3.3.1 Intracellular Calcium
96
4.3.3.2 Cell Proliferation
96
4.3.3.3 Stress Response
97
4.3.3.4 Ornithine Decarboxylase (ODC)
97
4.3.3.5 Immune System
97
4.3.4 Animal Cancer Studies
98
4.3.5 Noncancer Animal Studies
98
4.3.5.1 Behavioral Effects
98
4.3.5.2 Blood–Brain Barrier
99
4.3.5.3 Reproductive and Development
99
4.4 Clinical Studies
100
4.4.1 Perception and Sensitivity
100
4.4.2 Brain and Behavior
101
4.4.3 Cardiovascular System
102
4.4.4 Melatonin in Humans
102
4.5 Concluding Remarks and Future Research
103
4.5.1 Review Studies
104
4.5.2 Future Research
105
References
105
Chapter 5 Radio Frequency Standards and Dosimetry
119
5.1 Introduction
119
5.2 RF Exposure Guidelines
120
5.2.1 Major Guidelines
120
5.2.2 IEEE Guidelines
121
5.2.2.1 IEEE Standard C95.1
121
5.2.2.2 IEEE Standard 1528
122
5.2.2.3 IEEE C95.1-2005
123
5.2.3 ICNIRP Guidelines
124
5.2.3.1 CENELEC EN 50392:2004
125
5.2.3.2 EC Directive 2004/40/EC
125
5.2.4 Safety Factors
127
5.2.5 Incorporating Specific Absorption Rate
127
5.3 Measurement Surveys
129
5.3.1 Base Transceiver Stations
130
5.3.1.1 Shielding
130
5.3.1.2 Exposure Levels
131
5.3.2 Broadcast Stations
132
5.3.3 Traffic Radar Devices
132
5.3.4 RF Heaters and Sealer,
133
5.3.5 Microwave Ovens
133
5.3.6 RF Environmental Levels
133
5.3.7 Magnetic Resonance Imaging and Spectroscopy Systems
134
5.4 Personal Safety Assessment
134
5.4.1 Whole-Body Phantoms
134
5.4.2 In-Head Assessments
135
5.4.2.1 Adult Size Heads
136
5.4.2.2 Child Size Heads
137
5.4.2.3 Shielding for Mobile Antennas
140
5.5 Future Development
140
5.5.1 Harmonization of Safety Standards
141
5.5.2 Engineering Requirements and Dosimetric Information
142
References
143
Chapter 6 Bioeffects and Health Implications of Radiofrequency Radiation
149
6.1 Introduction
149
6.2 Epidemiological Studies
150
6.2.1 Occupational Exposure Studies
150
6.2.1.1 Navy Personnel and Military Workers
150
6.2.1.2 Traffic Radar Devices
151
6.2.1.3 RF Heat Sealers
151
6.2.1.4 Telecom Operators
151
6.2.2 Public Exposure Studies
152
6.2.2.1 Radio and TV Transmitters
152
6.2.2.2 Mobile and Cordless Phones
152
6.2.3 Summary of Epidemiological Studies
156
6.3 Cellular and Animal Studies
156
6.3.1 Genetic Toxicology
157
6.3.2 Cell Function
158
6.3.2.1 Cell Proliferation
158
6.3.2.2 Intracellular Calcium
158
6.3.2.3 Ornithine Decarboxylase
158
6.3.3 Hormonal Secretion
159
6.3.4 Animal Cancer Experiments
159
6.3.5 Noncancer Animal Studies
160
6.3.5.1 Morphological and Physiological Effects
160
6.3.5.2 Testicular Function and Development
160
6.3.5.3 Cataracts
160
6.3.5.4 Behavioral Effects
160
6.3.5.5 Blood—Brain Barrier
161
6.4 Clinical Studies
161
6.4.1 Perception and Auditory Response
161
6.4.2 Thermoregulatory Responses
162
6.4.3 Ocular Effects
163
6.4.4 Brain Function
163
6.4.5 Cardiovascular Diseases
165
6.4.6 Melatonin
165
6.5 Concluding Remarks and Future Research
165
6.5.1 Risk for Children
166
6.5.2 Research
167
References
168
Chapter 7 Electromagnetic Risk Analysis
179
7.1 Introduction
179
7.2 Risk Assessment
180
7.2.1 Scientific Evidence
180
7.2.2 Setting Standards
182
7.2.3 Structured Risk Assessment
183
7.3 Perception of Risk
183
7.3.1 Public Perception of Risk
184
7.3.2 Factors Relevant to Electromagnetic Fields
184
7.3.3 Health Consequences of Risk Perception
185
7.4 Risk Management
186
7.4.1 Involving the Public
186
7.4.2 Public Meetings
187
7.4.3 Precautionary Approaches
187
7.4.4 Public Understanding of Precautionary Actions
188
7.5 Risk Communication
188
7.5.1 Role of Communication in Risk Assessment
189
7.5.2 Role of Communication in Risk Management
189
7.5.3 Media Coverage
190
7.5.4 Role of Industry
191
7.5.5 Role of the Internet
191
7.5.6 Communication with Children
191
7.6 Trends and Future Research
192
7.6.1 Challenges and Implications
192
7.6.2 Research and Policy
193
7.6.3 Concluding Remarks
194
References,
194
PART II Therapeutic Applications of Electromagnetic Energy
Chapter 8 Electromagnetic Therapy
199
8.1 Introduction
199
8.2 History of Electromagnetic Therapy
201
8.3 Mechanism of Thermal injury
202
8.4 Thermal Therapy Treatment Protocol
203
8.5 Possible Side Effects of Electromagnetic Energy and Heat
204
8.5.1 Tissue Physiology and Response to Heat
205
8.5.2 Cellular Responses
206
8.5.3 Immunological Effects
207
8.5.4 Cardiovascular Responses
207
8.5.5 Nervous System Responses
208
8.5.6 Carcinogenic Effects
209
8.6 Concluding Remarks
210
8.6.1 Risk Assessment
210
8.6.2 Trends in Equipment Development
211
8.6.3 Future Research Directions
212
References
212
Chapter 9 Electromagnetic Hyperthermia
221
9.1 Introduction
221
9.2 Biological Rationale
222
9.2.1 Heat Alone
223
9.2.2 Heat and Radiation
224
9.2.3 Heat and Drugs
224
9.3 Types of Hyperthermia
224
9.3.1 Local Hyperthermia
225
9.3.1.1 External Local Hyperthermia
225
9.3.1.2 Intraluminal Local Hyperthermia
226
9.3.1.3 Interstitial Local Hyperthermia
227
9.3.2 Regional Hyperthermia
227
9.3.2.1 Deep Regional Hyperthermia
228
9.3.2.2 Regional Perfusion Hyperthermia
228
9.3.2.3 Other Regional Hyperthermic Techniques
229
9.3.3 Whole-Body Hyperthermia
229
9.3.4 Extracellular Hyperthermia
230
9.4 Hyperthermia Heating Devices
230
9.4.1 Techniques
231
9.4.1.1 Ultrasound
231
9.4.1.2 Radiofrequency
231
9.4.1.3 Microwaves
232
9.4.2 External RF Applicators
232
9.4.2.1 Capacitive Heating
232
9.4.2.2 Inductive Heating
233
9.4.2.3 Hybrid Heating Systems
234
9.4.3 External Radiative EM Devices
234
9.4.3.1 Single Applicators
235
9.4.3.2 Multielement Array Applicators
235
9.4.4 Interstitial and Intracavitary Devices
237
9.4.5 Nanotechnology-Based Sources
238
9.5 Hyperthermia with Other Modalities
240
9.5.1 Hyperthermia and Radiation
240
9.5.2 Hyperthermia and Chemotherapy
241
9.5.3 Hyperthermia and Radiochemotherapy
242
9.5.4 Hyperthermia and Gene Therapy
242
9.6 Status and Trends
243
9.6.1 Biological and Physiological Mechanisms
243
9.6.2 Technical and Clinical Challenges
243
9.6.3 Standardization
245
9.6.4 Future Research
245
References
245
Chapter 10 Radio Frequency and Microwave Ablation
265
10.1 Introduction
265
10.2 Thermal Ablation Therapy
265
10.2.1 Minimally Invasive Procedures
266
10.2.2 Ablation Techniques
267
10.2.3 Clinical Applications
267
10.2.3.1 Liver
268
10.2.3.2 Lung
269
10.2.3.3 Prostate
269
10.2.3.4 Kidney
269
10.2.3.5 Breast
270
10.2.3.6 Bone
270
10.2.3.7 Cardiac Diseases
270
10.3 RF Ablation
271
10.3.1 Technical Considerations
271
10.3.1.1 Mechanisms
271
10.3.1.2 Electrodes and Approaches
272
10.3.1.3 Multiple Applicators
273
10.3.1.4 Localization
274
10.3.1.5 Thermal—Electrical Modeling
774
10.3.2 Clinical Advantages and Applications
275
10.3.2.1 Cancer Treatment
275
10.3.2.2 Cardiac Diseases
278
10.3.2.3 Snoring and Obstructive Sleep Apnea (OSA)
279
10.3.3 Limitations
280
10.3.4 Complications
280
10.4 Microwave Ablation
282
10.4.1 Technical Considerations
282
10.4.1.1 Mechanisms
282
10.4.1.2 Antenna Designs
283
10.4. L3 Multiple Insertions and Multiple Antennas
284
10.4.2 Clinical Advantages and Applications
285
10.4.2.1 Treating Cancer
285
10.4.2.2 Cardiac Diseases
286
10.4.2.3 Microwave Endometrial Ablation (MEA)
288
10.4.3 Limitations
289
10.4.4 Complications
290
10.5 Trends and Future Research
290
10.5.1 Improved Techniques
290
10.5.2 Ablation in Clinical Practice
291
10.5.3 Future Research
292
References
293
PART III Dosimetry and Imaging
Chapter 11 Electromagnetic and Thermal Dosimetry
311
11.1 Introduction
311
11.2 EM Interaction with Biological Materials
311
11.3 Modeling Power Deposition
314
11.3.1 Techniques for Low Frequencies
315
11.3.2 Techniques for Radiofrequency Radiation
315
11.3.2.1 Analytical Techniques
315
11.3.2.2 Numerical Techniques
315
11.4 Specific Absorption Rate Modeling
316
11.4.1 Thermal Dose
317
11.4.2 Thermal Measurements
318
11.5 Bioheat Equation
319
11.5.1 Pennes Model
319
11.5.1.1 Bioheat Equation
320
11.5.1.2 Limitations
321
11.5.1.3 Analysis Based on Pennes' Equation
321
11.5.2 Wissler Model
322
11.5.3 Stolwijik Model
323
11.5.4 Weinbaum–Jiji Model
323
11.5.5 Baish Model
324
11.5.6 Applications of Bioheat Transfer Models
324
11.6 Thermal Therapy Planning System
325
11.6.1 Objectives and Requirements
326
11.6.2 Developments in TTPS
327
11.6.3 Thermal Monitoring
327
11.7 Status and Trends
328
References
328
Chapter 12 Thermometry and Imaging
337
12.1 Introduction
337
12.2 Development of Thermometry
338
12.3 Invasive Techniques
339
12.3.1 Thermoelectric Thermometry
339
12.3.2 Thermistor
340
12.3.3 Optical Fiber Thermometer
341
12.3.4 Applications and Comparison
341
12.4 Noninvasive Techniques
342
12.4.1 Ultrasound
343
12.4.1.1 Apparatus
343
12.4.1.2 Advantages and Limitations
344
12.4.1.3 Two- to Three-Dimensional Ultrasonography
344
12.4.2 Magnetic Resonance Imaging
345
12.4.2.1 Operation
346
12.4.2.2 Advantages
347
12.4.3 Microwave Radiometric Imaging
347
12.4.4 Terahertz Technology
348
12.4.4.1 Characteristics of THz Radiation
349
12.4.4.2 THz-Ray System
350
12.4.4.3 Challenges
351
12.4.5 X-Ray Computed Tomography
352
12.4.5.1 Conventional CT Scanners
352
12.4.5.2 Spiral (Helical) CT Scanners
352
12.4.5.3 Multislice CT Scanners
353
12.4.6 THz-Ray CT
353
12.5 Status and Trends
354
References
355
Acronyms and Abbreviations 361
Index 365


Habash, Riadh