Atnaujinkite slapukų nuostatas

El. knyga: Biofiltration for Air Pollution Control

(University of California, California, USA), (University of California, Riverside, USA), (University of Southern California, Los Angeles, California,)
  • Formatas: 318 pages
  • Išleidimo metai: 22-Nov-2017
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9781351464093
  • Formatas: 318 pages
  • Išleidimo metai: 22-Nov-2017
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9781351464093

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The number-one environmental threat to public health, air pollution remains a pressing problem-made even more complicated by the massive quantity and diversity of air pollution sources. Biofiltration technology (using micro-organisms growing on porous media) is being recognized as one of the most advantageous means to convert pollutants to harmless products. Done properly, biofiltration works at a reasonable cost-utilizing inexpensive components, without requiring fuel or generating hazardous by-products. Firmly established in Europe, biofiltration techniques are being increasingly applied in North America: Biofiltration for Air Pollution Control offers the necessary knowledge to "do it right."

Recenzijos

"Devinny and colleagues do a good job of explaining how the same microbial metabolic reactions can be used to treat contaminated air. They have done a thoughtful job of distilling recent (mostly 1994-98) publications on biofiltration by themselves and others into a very readable work."-CHOICE, April 1999 "Designed to help practitioners 'do it right', this book provides a comprehensive survey of biofiltration technology and conveys a basic understanding of how biofiltration works..."-Environmental Science & Technology, May 1999

1 Introduction
1(22)
1.1 Air Pollution legislation
2(1)
1.2 Types of Waste gas treatment
3(10)
1.2.1 Condensation
3(1)
1.2.2 Incineration
3(1)
1.2.3 Adsorption
4(1)
1.2.4 Absorption
4(1)
1.2.5 Membrane systems
4(1)
1.2.6 Biological treatment
5(2)
1.2.6.1 Biofilters
7(1)
1.2.6.2 Biotrickling filters and bioscrubbers
8(2)
1.2.7 Technology effectiveness and costs
10(3)
1.3 Historical review of biofiltration
13(2)
1.4 Biofiltration marketplace
15(2)
1.5 Biofilter terminology
17(4)
1.5.1 Empty bed residence time and true residence time
17(1)
1.5.2 Surface (or volumetric) and mass loading rate
18(1)
1.5.3 Removal efficiency and elimination capacity
19(2)
1.6 Additional biofiltration resources
21(1)
1.7 Conclusions
22(1)
2 Mechanisms of biofiltration
23(18)
2.1 Introduction
23(1)
2.2 Gas transfer
23(5)
2.2.1 The equilibrium
23(1)
2.2.2 Transfer rates
24(4)
2.3 The water phase
28(1)
2.4 Adsorbed contaminants
28(6)
2.5 Contaminant biodegradation
34(3)
2.5.1 The biofilm
34(1)
2.5.2 Kinetics
34(3)
2.6 Product generation
37(2)
2.7 Heat generation
39(1)
2.8 Conclusions
40(1)
3 Biofilter media
41(10)
3.1 Introduction
41(1)
3.2 Criteria for the choice of an optimal biofilter medium
42(3)
3.2.1 Inorganic nutrient content
42(1)
3.2.2 Organic content
42(1)
3.2.3 Chemical and inert additives
42(1)
3.2.4 Water content
43(1)
3.2.5 pH
43(1)
3.2.6 Sorption characteristics, porosity
43(1)
3.2.7 Bacterial attachment
44(1)
3.2.8 Mechanical properties
44(1)
3.2.9 Odor of the packing
44(1)
3.2.10 Packing cost and lifetime
44(1)
3.2.11 Packing disposal
45(1)
3.3 Materials used for biofilter media
45(4)
3.3.1 Compost
45(1)
3.3.2 Peat
45(2)
3.3.3 Soil
47(1)
3.3.4 Activated carbon
47(1)
3.3.5 Wood chips or bark
48(1)
3.3.6 Perlite
48(1)
3.3.7 Synthetic media
48(1)
3.4 Description of selected biofilter media
49(2)
3.4.1 Compost-based and organic media
49(1)
3.4.2 Soil media
50(1)
3.4.3 Synthetic media
50(1)
4 Controlling factors and operation of biofilters
51(30)
4.1 Introduction
51(1)
4.2 Water content
51(9)
4.2.1 Water in porous media
52(3)
4.2.2 Thermodynamic relationships
55(1)
4.2.3 Biological effects
56(1)
4.2.4 Partition effects
57(1)
4.2.5 Interference with air flow
58(1)
4.2.6 Drainage
59(1)
4.2.7 Control of water content
59(1)
4.3 Temperature
60(2)
4.4 Medium pH and alkalinity
62(3)
4.5 Nutrients
65(2)
4.6 Contaminant load and surface load
67(1)
4.7 Oxygen limitation
68(3)
4.8 Air flow direction
71(1)
4.9 Dust and grease
72(1)
4.10 Extreme biofilters
73(7)
4.10.1 Low pH biofilters for sulfide oxidation
73(1)
4.10.2 Anaerobic conditions in biofilters for chlorinated hydrocarbons
74(2)
4.10.3 Biofilters using cometabolism
76(1)
4.10.4 NO(x) biofilters
77(1)
4.10.5 High-temperature biofilters
78(1)
4.10.6 Low-water-content biofilters
78(3)
5 Microbial ecology of biofiltration
81(30)
5.1 Introduction
81(1)
5.2 Microbial species in biofilters
81(4)
5.2.1 Selection and proliferation
81(2)
5.2.2 Inoculation of biofilters
83(2)
5.3 Substrate utilization
85(8)
5.3.1 Induction
86(1)
5.3.2 Substrate interaction
86(1)
5.3.3 Acclimation
87(3)
5.3.4 Uptake of dissolved compounds
90(1)
5.3.5 Phagocytosis
90(1)
5.3.6 Exoenzymes
90(1)
5.3.7 Aerobic and anaerobic metabolism
91(1)
5.3.8 Cometabolism
92(1)
5.3.9 Toxicity
93(1)
5.4 The microbial community
93(7)
5.4.1 Longitudinal stratification
93(1)
5.4.2 Biofilms in biofilters
94(5)
5.4.3 Higher organisms in biofilters
99(1)
5.5 Biomass clogging
100(2)
5.6 Microbial observation of biofilters
102(7)
5.6.1 Microscopic observation
102(1)
5.6.1.1 Light microscopes
102(1)
5.6.1.2 Electron microscopes
103(2)
5.6.2 Viable heterotrophic plate counts
105(2)
5.6.3 Phospholipid fatty acid analysis
107(2)
5.6.4 Deoxyribonucleic acid (DNA) extraction
109(1)
5.7 Conclusions
109(2)
6 Modeling biofiltration
111(30)
6.1 Introduction
111(1)
6.2 The challenge of modeling biofiltration
112(1)
6.3 Biofilm models
113(21)
6.3.1 Ottengraf's model
113(7)
6.3.2 Devinny and Hodge model
120(5)
6.3.3 Shareefdeen et al. model
125(1)
6.3.4 Shareefdeen and Baltzis model with patches of biomass
126(2)
6.3.5 Deshusses et al. model
128(6)
6.4 QSAR models
134(5)
6.4.1 Choi et al. model
135(1)
6.4.2 Johnson and Deshusses model
136(1)
6.4.3 Govind et al. model
137(2)
6.5 Summary
139(2)
7 Design of biofilters
141(44)
7.1 Introduction
141(1)
7.2 Experimental protocol for assessing biofilter technology
142(7)
7.2.1 Preliminary testing and assessment of technology
143(1)
7.2.2 Bench-scale testing
144(3)
7.2.3 Pilot-scale testing
147(2)
7.3 Design of full-scale biofilters
149(25)
7.3.1 Reactor configuration
149(4)
7.3.2 Biofilter vessel construction
153(4)
7.3.3 Filter bed medium
157(4)
7.3.4 Air distribution systems
161(4)
7.3.5 Waste gas preprocessing
165(1)
7.3.5.1 Contaminant species and concentrations
165(1)
7.3.5.2 Particulate emissions
165(1)
7.3.5.3 Temperature
166(1)
7.3.5.4 Humidification for moisture control
166(2)
7.3.6 Water irrigation for moisture control
168(1)
7.3.6.1 Irrigation systems
169(2)
7.3.6.2 Operational problems associated with irrigation systems
171(1)
7.3.7 Computer control and analytical systems
172(1)
7.3.7.1 Computer control systems
172(1)
7.3.7.2 Analytical systems
173(1)
7.3.7.3 Electrical requirements
173(1)
7.4 Costs and economic considerations
174(9)
7.4.1 Capital (investment) costs
174(1)
7.4.2 Operating costs
175(1)
7.4.2.1 Energy consumption
175(3)
7.4.2.2 Water consumption and disposal
178(1)
7.4.2.3 Monitoring and maintenance
178(1)
7.4.2.4 Media replacement
178(1)
7.4.3 Cost estimate example for a full-scale biofilter
179(1)
7.4.4 Full-scale biofilter cost example
179(1)
7.4.4.1 Capital costs
179(1)
7.4.4.2 Annual operation and maintenance costs
180(1)
7.4.4.3 Medium replacement costs (every 5 years)
181(1)
7.4.4.4 Annualized Costs
181(1)
7.4.4.5 Other cost Estimates
182(1)
7.4.5 Summary
183(1)
7.5 Conclusions
183(2)
8 Biofilter startup and monitoring
185(26)
8.1 Startup
185(5)
8.1.1 Material shipping and handling
185(1)
8.1.2 Loading of material
186(1)
8.1.2.1 Inoculation
187(1)
8.1.2.2 Nutrient and chemical addition
187(1)
8.1.3 Air flow rates and mass loading
188(1)
8.1.4 Water irrigation
189(1)
8.1.5 Temperature
190(1)
8.2 Monitoring
190(1)
8.3 Air load
190(5)
8.4 Contaminants
195(5)
8.4.1 Input and output concentrations
195(1)
8.4.2 Contaminant concentration variability
196(1)
8.4.3 Pulse testing
196(1)
8.4.4 Product concentrations
197(1)
8.4.5 Instrumentation and techniques
197(3)
8.5 Medium characteristics
200(1)
8.5.1 Particle size distribution
200(1)
8.5.2 Moisture characteristic curve and field capacity
200(1)
8.5.3 pH and alkalinity
200(1)
8.6 Water content
201(1)
8.6.1 Input and output relative humidity
201(1)
8.6.2 Medium moisture content
202(1)
8.6.3 Irrigation water
202(1)
8.7 Temperature
203(1)
8.8 Medium permeability
203(2)
8.8.1 Average permeability and head loss
203(1)
8.8.2 Permeability homogeneity
204(1)
8.9 Biological activity
205(3)
8.9.1 Treatment success
205(1)
8.9.2 Cell counts
205(1)
8.9.3 Respiration
206(1)
8.9.4 Biomass
206(1)
8.9.5 Fatty acid analysis
207(1)
8.9.6 Visual inspection of biofilters
207(1)
8.10 Leachate characteristics
208(1)
8.11 Humidifiers
208(1)
8.12 Statistical analysis
209(1)
8.13 Conclusions
209(2)
9 Application of biofilters
211(40)
9.1 Introduction
211(1)
9.2 The ARA-Rhein biofilter: wastewater treatment adors and VOCs
211(4)
9.2.1 Design and operation comments
211(3)
9.2.2 Performance
214(1)
9.3 Odor control from flavor and fragrance manufacturing
215(1)
9.3.1 Design and operation comments
215(1)
9.4 Odor reduction from flavor manufacturing in a closed bed biofilter
216(2)
9.4.1 Design and operation comments
217(1)
9.4.2 Performance
217(1)
9.5 The Poughkeepsie biofilter: wastewater treatment odors
218(2)
9.5.1 Design and operation comments
218(2)
9.5.2 Performance
220(1)
9.6 Soil biofilter to treat odors from a fabric softener facility
220(5)
9.6.1 Design and operation comments
223(1)
9.6.2 Performance
224(1)
9.7 Small biofilters for gasoline vapor treatment at a soil-vapor extraction site
225(2)
9.7.1 Design and operation comments
225(2)
9.7.2 Performance
227(3)
9.8 Treatment of VOC mixtures from exhaust air in the wood industry
230(2)
9.8.1 Design and operation comments
231(1)
9.8.2 Performance
232(1)
9.9 Control of VOCs from ink-drying operations
232(3)
9.9.1 Design and operation comments
233(2)
9.9.2 Performance
235(1)
9.10 Removal of high concentrations of ethanol from a foundry off-gas
235(5)
9.10.1 Design and operation comments
236(3)
9.10.2 Performance
239(1)
9.11 Large open-bed biofilters for the removal of VOCs and odors
240(3)
9.11.1 Design and operation comments
241(1)
9.11.2 Performance
242(1)
9.12 High-concentration, low-flow biofilter for VOC treatment
243(2)
9.12.1 Design and operation comments
244(1)
9.12.2 Performance
245(1)
9.13 Soil biofilter for VOC removal in flexographic printing off-gases
245(3)
9.13.1 Design and operation comments
245(2)
9.13.2 Performance
247(1)
9.14 Biofilter or biotrickling filter? Example of an intermittently watered biotrickling filter for odor control
248(3)
9.14.1 Design and operation comments
248(2)
9.14.2 Performance
250(1)
Appendix A. Symbols 251(4)
Terms 251(2)
Greek symbols 253(1)
Superscripts, subscripts 253(1)
Abbreviations 253(2)
Appendix B. Selected elimination capacity values 255(4)
Appendix C. Conversion factors 259(2)
Appendix D. Absolute humidity of air saturated with water 261(2)
Appendix E. Approximate conversion of selected currencies 263(2)
Glossary 265(8)
References 273(16)
Index 289


Joseph S. Devinny