Atnaujinkite slapukų nuostatas

El. knyga: Biomechanics of the Human Body

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Biomechanics of the Human Body teaches basic physics concepts using examples and problems based on the human body. The reader will also learn how the laws of mechanics may help to understand the conditions of the static and dynamic equilibrium of one of the marvels of nature: the human body.

The mathematical language used in physics has always been pointed out as responsible for students difficulties. So, each concept given is followed by explanatory examples, with subsequent application and fixation exercises. It is a richly illustrated book that facilitates the comprehension of presented concepts.

Biomechanics of the Human Body can be useful to students of physical and occupational therapy, physical education, the life sciences, and health care professionals who deal with biomechanics. This book is also recommended for sport practitioners as well as the general reader interested in the mechanics of the human body.
1 Forces
1(22)
1.1 Objectives
1(1)
1.2 Concept of Force
1(2)
1.3 Representation of Forces: Diagram of Forces
3(1)
1.4 Resultant or Sum of Force Vectors
4(1)
1.5 Addition of Vectors
4(4)
1.5.1 Rule of Polygon
4(1)
1.5.2 Rule of Parallelogram
5(1)
1.5.3 Method of Components
5(1)
1.5.4 Algebraic Method
6(2)
1.6 Newton's Laws
8(2)
1.6.1 Newton's First Law of Motion (Law of Inertia)
8(1)
1.6.2 Newton's Second Law (Mass and Acceleration)
9(1)
1.6.3 Newton's Third Law (Action and Reaction)
9(1)
1.7 Some Specific Forces
10(8)
1.7.1 Weight
10(1)
1.7.2 Muscle Forces
11(1)
1.7.3 Contact Force or of Reaction or Normal (Perpendicular) Force
12(3)
1.7.4 Forces of Friction
15(3)
1.8 Pressure
18(3)
1.9 Answers to Exercises
21(2)
2 Torques
23(16)
2.1 Objectives
23(1)
2.2 Concept of Torque
23(6)
2.3 Binary or Couple
29(2)
2.4 Torque Due to Two or More Nonparallel Forces
31(4)
2.4.1 Resultant of Two Nonparallel Forces Applied on a Body and Its Line of Action
31(1)
2.4.2 Resultant of Two or More Nonparallel Forces Applied on a Body and Its Line of Action: Method of Funicular Polygon
32(3)
2.5 Rotational Equilibrium
35(2)
2.6 Answers to Exercises
37(2)
3 Center of Gravity
39(20)
3.1 Objectives
39(1)
3.2 Weight and Center of Gravity
39(3)
3.3 Practical Method to Locate the Center of Gravity
42(3)
3.4 Analytical Method to Locate the Center of Gravity
45(7)
3.5 Stable, Unstable, and Neutral Equilibrium
52(3)
3.6 Motion of the Center of Gravity
55(1)
3.7 Answers to Exercises
56(3)
4 Rotations
59(18)
4.1 Objectives
59(1)
4.2 Moment of Inertia
59(4)
4.3 Moment of Inertia of Regularly Shaped Uniform Solids
63(5)
4.3.1 Radius of Gyration
63(3)
4.3.2 Parallel Axis Theorem
66(2)
4.4 Moment of Inertia of the Human Body
68(2)
4.5 Angular Momentum and Its Conservation
70(3)
4.5.1 Angular Impulse
71(2)
4.6 Variation of Angular Momentum
73(1)
4.7 Answers to Exercises
74(3)
5 Simple Machines
77(22)
5.1 Objectives
77(1)
5.2 Simple Machines
77(1)
5.3 Work Done by a Force
78(1)
5.4 Levers
78(4)
5.4.1 First Class Levers
79(1)
5.4.2 Second Class Levers
80(1)
5.4.3 Third Class Levers
81(1)
5.4.4 Mechanical Advantage
81(1)
5.5 Levers in the Human Body
82(6)
5.5.1 The Locomotion Equipment
82(1)
5.5.2 Articulations and Joints
83(1)
5.5.3 Muscle and Levers
84(1)
5.5.4 Identification of Levers in the Human Body
84(4)
5.6 Pulleys
88(7)
5.6.1 Combination of Pulleys
89(3)
5.6.2 Traction Systems
92(3)
5.7 Inclined Plane
95(2)
5.8 Answers to Exercises
97(2)
6 Muscle Force
99(16)
6.1 Objectives
99(1)
6.2 Equilibrium Conditions of a Rigid Body
99(1)
6.3 System of Parallel Forces
100(3)
6.4 System of Nonparallel Forces
103(3)
6.5 Forces on the Hip
106(2)
6.6 Forces on the Spinal Column
108(6)
6.6.1 Forces Involved in the Spinal Column When the Posture Is Incorrect
108(4)
6.6.2 Forces Involved in the Spinal Column When the Posture Is Correct
112(2)
6.7 Answers to Exercises
114(1)
7 Bones
115(20)
7.1 Objectives
115(1)
7.2 Skeleton and Bones
115(1)
7.2.1 Composition of Bones
116(1)
7.3 Elastic Properties of Solids
116(2)
7.3.1 Tensile Stress and Compressive Stress
117(1)
7.4 Modulus of Elasticity
118(4)
7.4.1 Young's Modulus Y
118(2)
7.4.2 Shear Modulus S
120(2)
7.5 Elastic Properties of Bones
122(3)
7.6 Pressure or Stress on Intervertebral Discs
125(2)
7.7 Pressure on the Vertebrae
127(1)
7.8 Shear Stress in the Lumbosacral Intervertebral Disc
127(2)
7.9 Bone Fractures in Collisions
129(3)
7.10 Answers to Exercises
132(3)
8 Experimental Activities
135(18)
8.1 Objectives
135(1)
8.2 Introduction
135(3)
8.2.1 Significant Digits
135(2)
8.2.2 Mathematical Operations with Significant Digits: Two Examples
137(1)
8.3
Chapter 1: Forces
138(4)
8.3.1 Objectives
138(1)
8.3.2 Activity 1: Construction and Calibration of a Spring Scale (Dynamometer)
138(3)
8.3.3 Activity 2: Conditions for the Static Equilibrium with Respect to Translation
141(1)
8.4
Chapter 2: Torques
142(2)
8.4.1 Objectives
142(1)
8.4.2 Activity 3: Torque of a Force
142(2)
8.5
Chapter 3: Center of Gravity
144(1)
8.5.1 Objectives
144(1)
8.5.2 Activity 4: Center of Gravity
144(1)
8.6
Chapter 4: Rotations
145(1)
8.6.1 Objectives
145(1)
8.6.2 Activity 5: Moment of Inertia and Angular Momentum
145(1)
8.7
Chapter 5: Simple Machines
146(3)
8.7.1 Objectives
146(1)
8.7.2 Activity 6: Levers
146(2)
8.7.3 Activity 7: Inclined Plane
148(1)
8.8
Chapter 6: Muscle Force
149(3)
8.8.1 Objectives
149(1)
8.8.2 Activity 8: Association of Springs
149(3)
8.9
Chapter 7: Bones
152(1)
8.9.1 Objectives
152(1)
8.9.2 Activity 9: Strength of a Spring
152(1)
Appendix 153(4)
References 157(2)
Abbreviations 159(2)
Index 161
Emico Okuno is a Professor at the Institute of Physics, University of Sao Paulo. She has authored many books in portugese such as "Physics for the Biological and Biomedical Sciences" and "Physics of Football".

Luciano Fratin is a Professor of Engineering at Armando Alvares Penteado, Sao Paulo.