Preface |
|
xvii | |
Nomenclature |
|
xx | |
|
1 Overview of biomedical image analysis |
|
|
1 | (6) |
|
|
1 | (1) |
|
1.2 The scope of the book |
|
|
2 | (2) |
|
1.2.1 Signals and systems, image formation, and image modality |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.2.3 Computational geometry |
|
|
3 | (1) |
|
1.2.4 Variational calculus and level-set methods |
|
|
3 | (1) |
|
1.2.5 Image analysis tools |
|
|
4 | (1) |
|
1.3 Options for class work |
|
|
4 | (1) |
|
|
4 | (3) |
Part I Signals and systems, image formation, and image modality |
|
7 | (70) |
|
2 Overview of two-dimensional signals and systems |
|
|
9 | (30) |
|
|
9 | (1) |
|
2.2 Signal representations |
|
|
10 | (6) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (3) |
|
2.3 Basic sampling and quantization |
|
|
16 | (2) |
|
2.4 Sequence Fourier series |
|
|
18 | (5) |
|
2.4.1 Sequence Fourier transform |
|
|
21 | (1) |
|
2.4.2 Relationship to the continuous Fourier transform |
|
|
22 | (1) |
|
2.5 Discrete Fourier transform |
|
|
23 | (2) |
|
2.6 The fast Fourier transform (FFT) algorithm |
|
|
25 | (4) |
|
2.6.1 Effect of periodic shifts |
|
|
26 | (1) |
|
2.6.2 Circular convolution |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (2) |
|
2.8 Basic 2D digital filter design |
|
|
31 | (2) |
|
2.9 Anisotropic diffusion filtering |
|
|
33 | (3) |
|
|
36 | (1) |
|
|
36 | (2) |
|
|
38 | (1) |
|
3 Biomedical imaging modalities |
|
|
39 | (38) |
|
|
39 | (1) |
|
|
39 | (4) |
|
3.2.1 Filtration and beam hardening |
|
|
41 | (1) |
|
3.2.2 Simulation of X-ray transmission |
|
|
41 | (2) |
|
|
43 | (4) |
|
3.3.1 CT scanner generations |
|
|
45 | (1) |
|
3.3.2 Basic CT reconstruction algorithms |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (6) |
|
3.4.1 Scintillation cameras |
|
|
48 | (3) |
|
3.4.2 Emission computed tomography |
|
|
51 | (2) |
|
|
53 | (8) |
|
3.5.1 Ultrasound intensity |
|
|
54 | (1) |
|
3.5.2 Attenuation in ultrasound |
|
|
54 | (2) |
|
3.5.3 Reflection in ultrasound |
|
|
56 | (1) |
|
3.5.4 Refraction in ultrasound |
|
|
56 | (1) |
|
3.5.5 Ultrasound transducers |
|
|
56 | (1) |
|
|
57 | (1) |
|
3.5.7 Ultrasound instrumentation |
|
|
58 | (1) |
|
3.5.8 Ultrasound artifacts |
|
|
59 | (1) |
|
|
59 | (2) |
|
3.6 Magnetic resonance imaging |
|
|
61 | (10) |
|
|
63 | (1) |
|
3.6.2 Relaxation processes |
|
|
64 | (1) |
|
|
65 | (2) |
|
|
67 | (1) |
|
3.6.5 Tissue contrast in MRI |
|
|
68 | (1) |
|
3.6.6 Components of an MRI system |
|
|
69 | (2) |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
Appendix 3.1 Parallel beam filtered back-projection algorithm |
|
|
72 | (5) |
Part II Stochastic models |
|
77 | (104) |
|
|
79 | (28) |
|
|
79 | (1) |
|
4.2 Statistical experiments |
|
|
79 | (4) |
|
|
80 | (1) |
|
|
80 | (1) |
|
4.2.3 Probability measure P |
|
|
80 | (3) |
|
|
83 | (13) |
|
|
83 | (4) |
|
4.3.2 Properties of the CDF and the PDF of a random variable |
|
|
87 | (1) |
|
4.3.3 The conditional distribution |
|
|
88 | (2) |
|
4.3.4 Statistical expectation |
|
|
90 | (4) |
|
4.3.5 Functions of a random variable |
|
|
94 | (2) |
|
|
96 | (7) |
|
4.4.1 Statistical expectation in two dimensions |
|
|
99 | (1) |
|
4.4.2 Functions of two random variables |
|
|
100 | (2) |
|
4.4.3 Two functions of two random variables |
|
|
102 | (1) |
|
4.5 Simulation of random variables |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
107 | (24) |
|
5.1 Definition and general concepts |
|
|
107 | (6) |
|
5.1.1 Description of random processes |
|
|
109 | (1) |
|
5.1.2 Classification of a random process |
|
|
110 | (2) |
|
5.1.3 Continuity of a random process |
|
|
112 | (1) |
|
5.1.4 The Kolmogorov consistency conditions |
|
|
113 | (1) |
|
5.2 Distribution functions for a random process |
|
|
113 | (5) |
|
|
113 | (1) |
|
5.2.2 First- and second-order probability distribution functions |
|
|
114 | (4) |
|
5.3 Some properties of a random process |
|
|
118 | (8) |
|
|
118 | (1) |
|
5.3.2 The autocorrelation function |
|
|
118 | (2) |
|
5.3.3 The autocovariance function |
|
|
120 | (1) |
|
5.3.4 The cross-correlation function |
|
|
120 | (1) |
|
|
121 | (2) |
|
5.3.6 The power spectrum of a random process |
|
|
123 | (2) |
|
5.3.7 Cross-spectral density |
|
|
125 | (1) |
|
5.3.8 Power spectral density of discrete-parameter random process |
|
|
125 | (1) |
|
5.4 Linear systems with random inputs |
|
|
126 | (2) |
|
5.5 Two-dimensional random processes |
|
|
128 | (1) |
|
|
128 | (2) |
|
|
130 | (1) |
|
6 Basics of random fields |
|
|
131 | (32) |
|
|
131 | (5) |
|
|
136 | (3) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (2) |
|
6.7 MarkovGibbs random field models |
|
|
145 | (4) |
|
|
146 | (1) |
|
6.7.2 Aura-based GRF model |
|
|
147 | (1) |
|
|
148 | (1) |
|
6.8 GRF-based image synthesis |
|
|
149 | (4) |
|
6.8.1 Gibbs sampler algorithm |
|
|
149 | (1) |
|
|
149 | (2) |
|
6.8.3 Metropolis algorithm |
|
|
151 | (2) |
|
6.9 GRF-based image analysis |
|
|
153 | (6) |
|
|
153 | (2) |
|
6.9.2 Least square error method |
|
|
155 | (1) |
|
6.9.3 Analytical method for parameter identification |
|
|
155 | (4) |
|
|
159 | (1) |
|
|
159 | (2) |
|
|
161 | (1) |
|
|
162 | (1) |
|
7 Probability density estimation by linear models |
|
|
163 | (18) |
|
|
163 | (1) |
|
7.2 Nonparametric methods |
|
|
164 | (4) |
|
7.2.1 Kernel-based estimators |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
168 | (4) |
|
7.3.1 Maximum likelihood estimator (MLE) |
|
|
169 | (1) |
|
7.3.2 Biased versus unbiased estimator |
|
|
170 | (1) |
|
7.3.3 The expectation-maximization (EM) approach |
|
|
171 | (1) |
|
7.4 Linear combination of Gaussians model (LCG1) |
|
|
172 | (3) |
|
7.4.1 Modifications of the linear model (LCG2) |
|
|
174 | (1) |
|
7.5 Modeling the image intensity/appearance through the linear model |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (2) |
|
|
179 | (2) |
Part III Computational geometry |
|
181 | (92) |
|
8 Basics of topology and computational geometry |
|
|
183 | (30) |
|
|
183 | (1) |
|
|
183 | (3) |
|
|
183 | (1) |
|
8.2.2 How should a shape be described? |
|
|
184 | (1) |
|
8.2.3 Criteria for shape representation |
|
|
184 | (1) |
|
8.2.4 Data representation of shape |
|
|
184 | (2) |
|
8.3 Topological equivalence |
|
|
186 | (2) |
|
|
188 | (2) |
|
8.5 Surfaces in parameter space |
|
|
190 | (9) |
|
|
191 | (2) |
|
8.5.2 Parametric surfaces |
|
|
193 | (3) |
|
|
196 | (3) |
|
|
199 | (5) |
|
8.6.1 Manifolds and surfaces |
|
|
199 | (2) |
|
8.6.2 Barycentric coordinates |
|
|
201 | (1) |
|
8.6.3 Triangle local frame |
|
|
202 | (1) |
|
8.6.4 Surface curvature: discrete form |
|
|
202 | (2) |
|
|
204 | (1) |
|
|
205 | (2) |
|
|
207 | (1) |
|
|
208 | (5) |
|
9 Geometric features extraction |
|
|
213 | (60) |
|
|
213 | (4) |
|
|
217 | (8) |
|
9.2.1 The Harris detector |
|
|
217 | (2) |
|
9.2.2 The SUSAN corner detector |
|
|
219 | (1) |
|
9.2.3 HarrisLaplace and Harrisaffine corner detectors |
|
|
219 | (2) |
|
|
221 | (2) |
|
|
223 | (2) |
|
9.3 Comparative evaluation of interest points |
|
|
225 | (10) |
|
9.3.1 Multi-scale representations |
|
|
225 | (7) |
|
9.3.2 Scale-space representation |
|
|
232 | (1) |
|
9.3.3 Scale-space and feature detection |
|
|
233 | (1) |
|
9.3.4 Differential singularities and feature detection |
|
|
234 | (1) |
|
|
235 | (22) |
|
9.4.1 Scale-invariant feature transform (SIFT) |
|
|
235 | (3) |
|
9.4.2 Case study: Descriptors of small-size lung nodules in chest CT |
|
|
238 | (1) |
|
9.4.3 Extensions to the SIFT algorithms |
|
|
239 | (2) |
|
9.4.4 Speeded-up robust features (SURF) |
|
|
241 | (1) |
|
9.4.5 Multi-resolution local binary pattern (LBP) |
|
|
241 | (4) |
|
|
245 | (12) |
|
9.5 Three-dimensional local invariant feature descriptors |
|
|
257 | (7) |
|
9.5.1 Interest point detection |
|
|
257 | (4) |
|
9.5.2 3D descriptor building |
|
|
261 | (3) |
|
9.5.3 Descriptor matching |
|
|
264 | (1) |
|
|
264 | (3) |
|
|
267 | (1) |
|
|
267 | (2) |
|
|
269 | (4) |
Part IV Variational approaches and level sets |
|
273 | (22) |
|
10 Variational approaches and level sets |
|
|
275 | (20) |
|
10.1 Calculus of variation and Euler equation |
|
|
275 | (4) |
|
10.1.1 EulerLagrange equation for one independent variable |
|
|
276 | (1) |
|
10.1.2 EulerLagrange equation for multiple independent variables |
|
|
277 | (1) |
|
10.1.3 EulerLagrange and the gradient descent flow |
|
|
278 | (1) |
|
10.2 Curve/surface evolution via classical deformable models |
|
|
279 | (5) |
|
10.2.1 Curves and planar differential geometry |
|
|
279 | (1) |
|
10.2.2 Geometry of surfaces |
|
|
280 | (1) |
|
10.2.3 Geodesic curvature |
|
|
281 | (1) |
|
10.2.4 Principal curvatures |
|
|
281 | (1) |
|
10.2.5 Planar curves and surface normal |
|
|
281 | (1) |
|
10.2.6 Curve/surface evolution as a variational problem |
|
|
282 | (1) |
|
10.2.7 Discretization and numerical simulation of snakes |
|
|
283 | (1) |
|
|
284 | (3) |
|
10.3.1 Implicit representation and the evolution PDE |
|
|
284 | (2) |
|
10.3.2 Level-set calculus |
|
|
286 | (1) |
|
10.4 Numerical methods for level sets |
|
|
287 | (3) |
|
10.4.1 Conservation law and weak solutions |
|
|
287 | (1) |
|
10.4.2 Entropy condition and viscosity solutions |
|
|
288 | (1) |
|
10.4.3 Upwind direction and discontinuous solutions |
|
|
288 | (1) |
|
10.4.4 The Eulerian formulation and the hyperbolic conservation law |
|
|
289 | (1) |
|
|
290 | (3) |
|
10.5.1 Need for reinitialization and the distance function |
|
|
291 | (1) |
|
10.5.2 Front evolution without reinitialization |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
293 | (1) |
|
|
294 | (1) |
Part V Image analysis tools |
|
295 | (163) |
|
11 Segmentation: statistical approach |
|
|
297 | (19) |
|
|
297 | (2) |
|
|
299 | (7) |
|
11.2.1 Problem formulation and image models |
|
|
300 | (6) |
|
11.3 Experiments and discussion |
|
|
306 | (7) |
|
11.3.1 Ground-truth experiments |
|
|
307 | (1) |
|
11.3.2 Examples of applicability to biomedical images |
|
|
308 | (5) |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
314 | (2) |
|
12 Segmentation: variational approach |
|
|
316 | (29) |
|
|
316 | (2) |
|
12.2 Variational segmentation without edges |
|
|
318 | (2) |
|
12.2.1 The MumfordShah energy formulation |
|
|
318 | (1) |
|
12.2.2 Chan and Vese variational approach |
|
|
319 | (1) |
|
12.3 Image segmentation using multiple level-set functions |
|
|
320 | (2) |
|
12.4 Implicit shape representation |
|
|
322 | (2) |
|
12.4.1 Shape registration |
|
|
324 | (1) |
|
12.5 Shape-based segmentation |
|
|
324 | (2) |
|
12.6 Curve/surface modeling by level sets |
|
|
326 | (2) |
|
12.7 Variational model for evolution-based region statistics |
|
|
328 | (1) |
|
12.8 Examples and evaluation |
|
|
329 | (5) |
|
12.8.1 Performance on images and volumes |
|
|
329 | (2) |
|
12.8.2 Validation experiment on a real phantom |
|
|
331 | (1) |
|
12.8.3 Blood vessel extraction |
|
|
332 | (2) |
|
12.9 Clinical example: lung nodule segmentation |
|
|
334 | (8) |
|
12.9.1 Variational approach for nodule segmentation |
|
|
336 | (1) |
|
|
337 | (2) |
|
12.9.3 Level-set segmentation with shape prior |
|
|
339 | (1) |
|
|
339 | (2) |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
342 | (1) |
|
12.12 Computer laboratory |
|
|
342 | (1) |
|
|
343 | (2) |
|
13 Basics of registration |
|
|
345 | (42) |
|
|
345 | (1) |
|
13.2 Basic concepts and definitions |
|
|
346 | (9) |
|
13.2.1 Components of the registration transformation |
|
|
349 | (3) |
|
13.2.2 Choice of transformation |
|
|
352 | (1) |
|
13.2.3 Similarity measures |
|
|
353 | (2) |
|
13.3 Surface registration by the ICP algorithm |
|
|
355 | (11) |
|
13.3.1 Mathematical preliminaries |
|
|
355 | (4) |
|
|
359 | (7) |
|
13.4 Global image registration via mutual information |
|
|
366 | (12) |
|
|
369 | (2) |
|
13.4.2 Basics of information theory |
|
|
371 | (4) |
|
13.4.3 Registration metric |
|
|
375 | (2) |
|
13.4.4 Mutual information registration |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
378 | (1) |
|
|
379 | (1) |
|
|
380 | (1) |
|
|
380 | (1) |
|
Appendix 13.1 MATLAB code implementations |
|
|
381 | (6) |
|
14 Variational methods for shape registration |
|
|
387 | (30) |
|
|
387 | (2) |
|
|
389 | (5) |
|
14.2.1 Parametric representations |
|
|
389 | (1) |
|
14.2.2 Landmark-based representation |
|
|
390 | (1) |
|
14.2.3 Medial axes representation |
|
|
391 | (1) |
|
14.2.4 Implicit representation using the vector distance function |
|
|
392 | (1) |
|
14.2.5 Implicit representation using distance transform |
|
|
392 | (2) |
|
14.3 Global registration of shapes in implicit spaces |
|
|
394 | (9) |
|
14.3.1 Global matching of shapes |
|
|
394 | (3) |
|
14.3.2 VDF-based dissimilarity measure |
|
|
397 | (1) |
|
14.3.3 SDF-based dissimilarity measure |
|
|
398 | (2) |
|
|
400 | (3) |
|
14.4 Local shape registration |
|
|
403 | (10) |
|
|
405 | (3) |
|
14.4.2 Gradient descent flows and numerical implementation |
|
|
408 | (5) |
|
|
413 | (1) |
|
|
414 | (3) |
|
15 Statistical models of shape and appearance |
|
|
417 | (41) |
|
|
417 | (1) |
|
15.2 Statistical shape models |
|
|
417 | (11) |
|
15.2.1 Construction of statistical shape model using PCA |
|
|
419 | (2) |
|
15.2.2 Fitting a model to new points |
|
|
421 | (1) |
|
15.2.3 Statistical modeling of structures |
|
|
422 | (2) |
|
15.2.4 Modeling shape variations |
|
|
424 | (4) |
|
15.3 Statistical appearance models |
|
|
428 | (8) |
|
|
428 | (1) |
|
15.3.2 One-dimensional thin-plate splines |
|
|
429 | (1) |
|
15.3.3 N-dimensional thin-plate splines |
|
|
429 | (2) |
|
15.3.4 Statistical appearance model construction using PCA |
|
|
431 | (2) |
|
15.3.5 Combined appearance models |
|
|
433 | (3) |
|
15.4 Analysis of lung nodules in low-dose CT (LDCT) scans |
|
|
436 | (5) |
|
15.4.1 Lung nodules in low-dose CT |
|
|
437 | (4) |
|
15.5 Appearance-based approach for complete human jaw reconstruction |
|
|
441 | (7) |
|
|
444 | (1) |
|
15.5.2 Model-based shape and albedo recovery |
|
|
445 | (1) |
|
|
446 | (2) |
|
|
448 | (1) |
|
|
448 | (2) |
|
Appendix 15.1 Pseudocodes and MATLAB realizations |
|
|
450 | (8) |
Index |
|
458 | |