Atnaujinkite slapukų nuostatas

El. knyga: Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis: MICCAI 2021 Challenges: MIDOG 2021, MOOD 2021, and Learn2Reg 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27-October 1, 2021, Proceedings

Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 13166
  • Išleidimo metai: 01-Mar-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030972813
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 13166
  • Išleidimo metai: 01-Mar-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030972813

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes three challenges that were held in conjunction with the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, which was planned to take place in Strasbourg, France but changed to an online event due to the COVID-19 pandemic.





The peer-reviewed 18 long and 9 short papers included in this volume stem from the following three biomedical image analysis challenges:















         Mitosis Domain Generalization Challenge (MIDOG 2021),          Medical Out-of-Distribution Analysis Challenge (MOOD 2021), and          Learn2Reg (L2R 2021).

















The challenges share the need for developing and fairly evaluating algorithms that increase accuracy, reproducibility and efficiency of automated image analysis in clinically relevant applications.
Preface MIDOG 2021.- Domain Adversarial RetinaNet as a Reference
Algorithm for the MItosis DOmainGeneralization Challenge.- Assessing domain
adaptation techniques for mitosis detection in multi-scanner breast cancer
histopathology images.- Domain-Robust Mitotic Figure Detection with
StyleGAN.- Two-step Domain Adaptation for Mitosis Cell Detection in
Histopathology Images.- Robust Mitosis Detection Using a Cascade Mask-RCNN
Approach With Domain-Specific Residual Cycle-GAN Data Augmentation.-
Stain-Robust Mitotic Figure Detection for the Mitosis Domain Generalization
Challenge.- MitoDet: Simple and robust mitosis detection.- Multi-source
Domain Adaptation Using Gradient Reversal Layer for Mitotic Cell Detection.-
Rotation Invariance and Extensive Data Augmentation: a strategy for the
Mitosis Domain Generalization (MIDOG) Challenge.- Detecting Mitosis against
Domain Shift using a Fused Detector and Deep Ensemble Classi cation Model for
MIDOG Challenge.- Domain Adaptive Cascade R-CNN for Mitosis DOmain
Generalization (MIDOG) Challenge.- Reducing Domain Shift For Mitosis
Detection Using Preprocessing Homogenizers.- Cascade RCNN for MIDOG
Challenge.- Sk-Unet Model with Fourier Domain for Mitosis Detection.- Preface
MOOD21.- Self-Supervised 3D Out-of-Distribution Detection via Pseudoanomaly
Generation.- Self-Supervised Medical Out-of-Distribution Using U-Net Vision
Transformers.- SS3D: Unsupervised Out-of-Distribution Detection and
Localization for Medical Volumes.- MetaDetector: Detecting Outliers by
Learning to Learn from Self-supervision.- AutoSeg - Steering the Inductive
Biases for Automatic Pathology Segmentation.- Preface Learn2Reg 2021.-
Deformable Registration of Brain MR Images via a Hybrid Loss.- Fraunhofer
MEVIS Image Registration Solutions for the Learn2Reg 2021 Challenge.-
Unsupervised Volumetric Displacement Fields Using Cost Function Unrolling.-
Conditional Deep Laplacian Pyramid Image Registration Network in Learn2Reg
Challenge.- TheLearn2Reg 2021 MICCAI Grand Challenge (PIMed Team).- Fast 3D
registration with accurate optimisation and little learning for Learn2Reg
2021.- Progressive and Coarse-to-fine Network for Medical Image Registration
across Phases, Modalities and Patients. -Semi-supervised Multilevel Symmetric
Image Registration Method for Magnetic Resonance Whole Brain Images.