Atnaujinkite slapukų nuostatas

Biomedical Materials 2009 ed. [Kietas viršelis]

Edited by
  • Formatas: Hardback, 566 pages, aukštis x plotis: 235x155 mm, weight: 1153 g, XXIII, 566 p., 1 Hardback
  • Išleidimo metai: 22-Jun-2009
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 0387848711
  • ISBN-13: 9780387848716
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 566 pages, aukštis x plotis: 235x155 mm, weight: 1153 g, XXIII, 566 p., 1 Hardback
  • Išleidimo metai: 22-Jun-2009
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 0387848711
  • ISBN-13: 9780387848716
Kitos knygos pagal šią temą:
Discusses contemporary biomaterials research and development. This title provides an understanding of the fundamental concepts necessary to pursue research and industrial work on biomaterials, including characteristics of biomaterials, biological processes, biocompatibility, and applications of biomaterials in implants and medical instruments.

Biomedical Materials provides a comprehensive discussion of contemporary biomaterials research and development. Highlighting important topics associated with Engineering, Medicine and Surgery, this volume reaches a wide scope of graduate students involved with biomaterials. A pedagogical writing style and structure provides students with an understanding of the fundamental concepts necessary to pursue research and industrial work on biomaterials, including characteristics of biomaterials, biological processes, biocompatibility, and applications of biomaterials in implants and medical instruments.Written by leading researchers in the field, this text book takes the reader to the forefront of biomedical materials development, providing the student with a taste of how the field is changing, while also serving as a useful reference to physicians and engineers.
Part I The Fundamental Properties of the Materials Used in Medicine and Dentistry
Ceramics and Glasses
3(38)
Irene G. Turner
Introduction
3(1)
What Is a Ceramic?
4(1)
Ceramic Processing
5(1)
Powder Processing
5(2)
Deformation and Fracture
7(2)
Transformation Toughening
9(1)
Pressureless Sintering
10(1)
Isostatic Pressing
10(2)
Liquid Phase Sintering
12(1)
Tape Casting
13(1)
Costs of Powder Processing
13(1)
Porous Ceramics
13(2)
BurPS
13(1)
Foamed Slips
14(1)
Reticulated Foams
14(1)
Measurement of Porosity in Porous Ceramics
15(1)
Surface Engineering
16(3)
Ion Implantation
17(1)
Thermal Spray Coatings
17(2)
Glasses and Glass-Ceramics
19(14)
Glasses
19(2)
Glass-Ceramics
21(1)
Bioceramics
22(1)
Bone
23(2)
Medical Ceramics
25(1)
Biomedical Use of Bioceramics
26(1)
Alumina
26(2)
Zirconia
28(1)
Hydroxyapatite
29(1)
Porous Bioceramics
30(3)
Functional Gradient Materials
33(1)
Bone Morphogenetic Proteins
33(1)
Hydroxyapatite Coatings
34(2)
Bioactive Glasses
36(1)
Conclusion
37(1)
References
38(3)
Metallic Biomaterials
41(42)
Robert M. Pilliar
Introduction - Why Metals?
41(1)
Metallic Interatomic Bonding
42(1)
Crystal Structures - Atom Packing in Metals
42(1)
Phase Transformations - Diffusive and Displacive
43(4)
Diffusion in Metals
47(1)
Interatomic Forces and Elastic Moduli (Structure-Insensitive Properties)
48(3)
Plastic Deformation and Structure-Sensitive Properties
51(3)
Corrosion Resistance
54(1)
Metals and Processes for Implant Fabrication
54(1)
Austenitic Stainless Steel (ASTM F 138/139, F 1314, F 1586, F 2229)
55(3)
Co-based Alloys
58(1)
Cast CoCrMo (ASTM F 75)
58(4)
Wrought CoCrMo (Low- and High-Carbon) (ASTM F 799, F 1537)
62(3)
Surface Modification of CoCrMo Implants - Porous Coatings for Bone Ingrowth
65(1)
Other Co-containing Implant Alloys (ASTM F 562, F 90, F 563, F 1058)
66(1)
Titanium-Based Alloys
67(1)
Commercial Purity Ti
68(1)
(α+β) Ti Alloys
69(2)
β-Ti and Near β-Ti Alloys
71(1)
Zr-Nb Alloy
72(1)
Ni-Ti Alloys (Nitinol)
73(1)
Tantalum
74(1)
Platinum, Platinum-Iridium
75(1)
Dental Alloys
75(1)
Dental Amalgams
76(1)
Dental Casting Alloys - (Au-based, Co- and Ni-based, Ti-based)
76(2)
Wrought Dental Alloys
78(1)
New Directions
78(1)
References
79(4)
Polymeric Biomaterials
83(40)
Teerapol Srichana
Abraham J. Domb
Introduction
83(1)
Nomenclature
83(1)
Biopolymer in Medical Applications
84(3)
Inert Polymers
87(9)
Silicones
87(2)
Polyacrylates
89(1)
Polyethylene and Related Polymers
90(3)
Polyamides
93(1)
Polyurethane and Polyurea
94(1)
Polyesters
95(1)
Polyethers
95(1)
Natural Biopolymer
96(6)
Collagen and Gelatins
96(1)
Fibrin
97(1)
Polysaccharide Hydrogels
97(1)
Glycosaminoglycans
98(1)
Alginates
99(1)
Chitin and Chitosan
100(1)
Dextran
101(1)
Bioactive Polymers
102(4)
Polymeric Drugs
103(1)
Polymeric Drug Conjugates/Polymeric Protein Conjugates
104(1)
Polymeric Prodrugs
105(1)
Targeted Polymeric Drug
105(1)
Biodegradable Polymers
106(5)
Polyesters
106(2)
Poly(ortho esters)
108(1)
Polycarbonates
109(1)
Polyanhydrides
109(1)
Poly(phosphate ester)
110(1)
Poly(phosphazenes)
110(1)
Characterization of Biomaterials
111(4)
Chemical Properties on the Surfaces
112(1)
Physical Properties of the Surfaces
113(1)
Adsorbed and Immobilized Protein Determination
114(1)
In Vitro Cell Growth
114(1)
Blood Compatibility
114(1)
Fabrication Technology
115(2)
Extrusion
115(2)
Injection Molding
117(1)
Future Trends in Biomedical Uses of Biopolymers
117(1)
References
118(5)
Part II The Interaction Between Materials and Living Tissues
Biomaterials: Processing, Characterization, and Applications
123(32)
Damien Lacroix
Josep A. Planell
Introduction
123(1)
Bone Biomechanics
123(7)
Bone Composition and Structure
123(3)
Biomechanical Properties of Bone
126(3)
Bone Remodeling
129(1)
Cartilage Biomechanics
130(6)
Cartilage Composition and Structure
130(3)
Biomechanical Properties of Cartilage
133(2)
Cartilage Degeneration
135(1)
Skin Biomechanics
136(2)
Skin Composition and Structure
136(1)
Biomechanical Properties of Skin
137(1)
Tendon and Ligament Biomechanics
138(2)
Structure and Composition
138(1)
Biomechanical Properties of Tendons and Ligaments
139(1)
Muscle Biomechanics
140(3)
Muscle Structure and Composition
140(2)
Biomechanical Properties of Muscles
142(1)
Blood Vessel and Arterial Biomechanics
143(4)
Composition and Structure of Blood Vessels and Arteries
143(2)
Biomechanical Properties
145(1)
Critical Closing Pressure
146(1)
Joint Biomechanics
147(1)
Description of Joint Biomechanics
147(1)
Function of Joint Biomechanics
147(1)
Mechanical Stresses of Joints
148(1)
Conclusion
148(1)
Bibliography
149(6)
Metal Corrosion
155(28)
Miroslav Marek
Interaction of Metallic Biomaterials with the Human Body Environment
155(1)
Electrochemical Reactions on Metallic Biomaterials
156(14)
Forms of Corrosion of Metallic Biomaterials
170(8)
Uniform Dissolution
170(1)
Galvanic Corrosion
171(2)
Concentration Cell Corrosion
173(1)
Pitting and Crevice Corrosion
174(2)
Environment Induced Cracking
176(1)
Intergranular Corrosion
177(1)
Wear-Corrosion, Abrasion-Corrosion, Erosion-Corrosion, Fretting
178(1)
Corrosion Testing of Metallic Biomaterials
178(3)
References
181(2)
Wear
183(18)
Chunming Jin
Wei Wei
Introduction
183(1)
Friction, Lubrication, and Wear
183(2)
Wear Classifications and Fundamental Wear Mechanisms
185(5)
Adhesive Wear
186(1)
Fatigue Wear
187(1)
Abrasive Wear and Third-Body Wear
188(1)
Chemical (Corrosive) Wear
189(1)
Wear in Biomedical Devices and Biomaterials
190(6)
Wear in Prostheses and Biomedical Devices
190(1)
Wear Resistance of Biomedical Materials
191(5)
Summary
196(1)
References
196(5)
Inflammation, Carcinogenicity and Hypersensitivity
201(14)
Patrick Doherty
Introduction
201(1)
Granulation Tissue
201(1)
Foreign Body Response
202(1)
Repair
203(1)
Acute and Chronic Inflammation
204(2)
Infection
206(1)
Local and Systemic Responses
207(1)
Soft and Hard Tissue Responses
207(2)
Blood-Material Interactions
209(1)
Biocompatibility
210(2)
Carcinogenicity
212(1)
Hypersensitivity
213(1)
References
214(1)
Protein Interactions at Material Surfaces
215(24)
Janice L. McKenzie
Thomas J. Webster
Introduction
215(1)
Protein Properties
215(8)
Structure
216(7)
Isoelectric Point and Solubility
223(1)
Hydrophoblic Composition
223(1)
Material Surface Properties
223(5)
Surface Topography
224(2)
Surface Energy
226(1)
Surface Chemistry
227(1)
Protein Adsorption on Surfaces
228(6)
Kinetics and Thermodynamics
229(1)
Density
230(1)
Conformation
230(1)
Extracellular Matrix Proteins
231(1)
Cell Adhesive Amino Acid Sequences
232(2)
Nanoscale Biomaterials
234(1)
Conclusions
235(1)
References
236(3)
Sterility and Infection
239(22)
Showan N. Nazhat
Anne M. Young
Jonathan Pratten
Sterilization
239(3)
Steam Autoclaves
239(2)
Dry Heat
241(1)
Radiation
241(1)
Ethylene Oxide
241(1)
New Technologies
242(1)
Biomaterials Associated Infections
242(6)
Biofilms
242(2)
Types of Medical Related Biofilms
244(1)
Infections Associated with Implantable Devices
245(3)
The Use Antibiotics in the Treatment of Biomaterials Associated Infections
248(2)
Systemic Antibiotic Prophylaxis
248(1)
Local Delivery of Antibiotics and Antimicrobial Agents
249(1)
Developing Infection-Preventing Biomaterials
250(2)
Case Study: Oral Infections and Biomaterials
252(6)
Dental Caries and Periapical Disease
252(4)
Periodontal Disease
256(2)
References
258(3)
Biocompatibility Testing
261(34)
Kirsten Peters
Ronald E. Unger
C. James Kirkpatrick
Introduction
261(1)
Sample Preparation
262(1)
Mammalian Cell Culture
263(24)
Cytotoxicity Testing
268(7)
Hemocompatibility
275(4)
Hypersensitivity/Allergic Responses
279(3)
Genotoxicity
282(4)
Tissue Specific Aspects of Biocompatibility Testing
286(1)
Animal Experimentation
287(1)
Alternatives to Animal Experimentation
288(2)
References
290(5)
Part III Applications of Polymers, Metals, and Ceramics in Medicine
Biomaterials for Dental Applications
295(32)
Sarit B. Bhaduri
Sutapa Bhaduri
Introduction
295(1)
Historical Perspectives
296(1)
Metals for Dental Application
296(17)
Amalgams
296(2)
Biocompatibility of Dental Amalgams
298(1)
Casting Alloys
298(4)
Wrought Alloys as Orthodontic Wire
302(2)
Dental Implants
304(9)
Ceramics for Dental Applications
313(7)
Metal-Ceramic Restorations
314(1)
All-Ceramic Restorations
315(2)
Processing of All-Ceramic Restorations
317(1)
Selection Guide for All-Ceramic Restorations
318(1)
Clinical Failure of All-Ceramic Crowns
319(1)
Bioactive Glasses
319(1)
Polymers for Dental Applications
320(3)
Dentures
320(1)
Dental Cements
320(2)
Composite Dental Materials
322(1)
Closure
323(1)
References
323(4)
Ophthalmic Biomaterials
327(22)
Rachel L. Williams
David Wong
Introduction
327(1)
Oxygen Delivery
328(2)
Refraction
330(2)
Tissue Protection
332(1)
Tissue Integration
333(6)
Artificial Cornea Transplants
334(1)
Artificial Eye
335(2)
Retinal Implants
337(2)
Modulation of Wound Healing
339(1)
Interfacial Tension and Tamponade
340(5)
Concluding Remarks
345(1)
References
346(3)
Hip Prosthesis
349(22)
Afsaneh Rabiei
Introduction
349(2)
History of Total Hip Replacement
351(1)
Various Components and Design of THR
352(4)
Socket or Acetabular Cup
353(1)
The Ball
354(1)
Stem
354(1)
Fixation of THR
354(2)
Various Materials for THR
356(9)
Alumina
357(1)
Yttria Stabilized Zirconia
358(1)
Polyethylene
359(1)
Cobalt Based Alloys
360(2)
Titanium Based Alloys
362(1)
Coatings
363(2)
Design Variation of THR
365(1)
References
366(5)
Burn Dressing Biomaterials and Tissue Engineering
371(44)
Lauren E. Flynn
Kimberly A. Woodhouse
Introduction
371(1)
Physiology of the Skin
371(11)
Basic Organization and Cellular Composition
372(2)
The Epidermis
374(3)
The Dermis
377(1)
The Dermal-Epidermal Junction Zone
378(1)
The Hypodermis
379(1)
The Appendages
379(2)
Functions of the Skin
381(1)
Development of the Integumentary System
382(1)
The Epidermis
382(1)
The Dermis
382(1)
The Appendages
383(1)
Burns
383(4)
Burn Classification
383(1)
Principles of Burn Wound Healing
384(2)
Immune System Response to Burn Injury
386(1)
Complications
387(1)
Conventional Treatment of Burns
387(5)
Treatment of Minor Burns
387(1)
Primary Treatment of Severe Burns
388(1)
Autografting: The Current Gold Standard
389(1)
Biological Alternatives for Temporary Wound Coverage
390(2)
Burn Dressing Biomaterials and Tissue Engineering
392(10)
Design Criteria
392(2)
Skin Substitutes
394(8)
Growth Factor Incorporation
402(1)
Epidermal Stem Cells
402(1)
Future Outlook
402(2)
References
404(11)
Natural and Synthetic Polymeric Scaffolds
415(28)
Diana M. Yoon
John P. Fisher
Introduction
415(1)
Natural Polymers for Scaffold Fabrication
415(4)
Polysaccharides
417(2)
Polypeptides
419(2)
Collagen
419(2)
Synthetic Polymers for Scaffold Fabrication
421(7)
Polyesters
421(5)
Other Synthetic Polymers
426(2)
Fabrication Techniques
428(3)
Conventional Techniques
428(2)
Rapid Prototyping or Solid Freefrom Fabrication Techniques
430(1)
Properties for Scaffold Design
431(4)
Polymer Assembly
431(1)
Surface Properties
432(1)
Macrostructure
432(1)
Biocompatibility
433(1)
Biodegradability
434(1)
Mechanical Properties
435(1)
Summary
435(1)
References
436(7)
BioMEMS
443(34)
Florent Cros
MEMS General Introduction
443(1)
BioMEMS General Presentation
444(5)
What Are They?
444(2)
Why Building BioMEMS?
446(2)
Risks and Drawback Associated to BioMEMS
448(1)
BioMEMS Design, Materials and Fabrication
449(16)
BioMEMS Design
449(1)
BioMEMS: Importance of Materials and Materials Characterization
450(2)
Material for BioMEMS
452(4)
Biocompatibility of MEMS Materials
456(1)
BioMEMS Fabrication Techniques
456(9)
BioMEMS Application Review
465(6)
BioMEMS Classification
465(1)
BioMEMS for Cell Culturing
466(1)
BioMEMS for DNA, Proteins and Chemical Analysis
467(2)
BioMEMS for In-Vivo Applications: Interfacing with the Nervous System
469(1)
Micro-Surgical Tools
470(1)
Conclusion
471(1)
References
471(6)
Magnetic Particles for Biomedical Applications
477(16)
Raju V. Ramanujan
Introduction
477(1)
Magnetism and Magnetic Materials
478(5)
Categories of Magnetic Materials
479(2)
The Influence of Temperature
481(1)
Magnetization Processes in Ferromagnetic and Ferrimagnetic Materials
481(1)
Factors Affecting Magnetic Properties
482(1)
Physical Principles
483(2)
Examples and Property Requirements of Magnetic Biomaterials
485(1)
Applications
486(4)
Magnetic Separation
486(1)
Drug Delivery
487(1)
Radionuclide Delivery
488(1)
Gene Delivery
488(1)
Hyperthermia
488(1)
Magnetic Resonance Imaging Contrast Agent
489(1)
Artificial Muscle
490(1)
Summary
490(1)
References
491(2)
Specialized Fabrication Processes: Rapid Prototyping
493(32)
C.K. Chua
K.F. Leong
K.H. Tan
Introduction
493(1)
Biomedical Applications of Rapid Prototyping-Tissue Engineering Scaffolds
494(1)
Roles and Pre-Requisites for Tissue Engineering Scaffolds
494(1)
Conventional Manual-Based Scaffold Fabrication Techniques
495(1)
Computer-Controlled Freeform Fabrication Techniques for Tissue Engineering Scaffolds
496(12)
Solid-Based Techniques
497(5)
Powder-Based Techniques
502(3)
Liquid-Based Techniques
505(3)
Development of CAD Strategies and Solutions for Automated Scaffolds Fabrication
508(4)
Prostheses
512(3)
Integrated Approach to Prostheses Production
513(2)
Case Studies
515(3)
Prosthetic Ear
515(1)
Prosthetic Forehead
516(2)
Conclusion
518(1)
References
519(6)
Manufacturing Issues
525(20)
David Hill
Patents
526(8)
EPC Contracting Countries
530(1)
PCT Contracting Countries
530(1)
Copyright
531(1)
Trade Marks
532(1)
Registered Design
532(1)
Finally Litigation
533(1)
Liability
534(4)
Quality, Standards, Specifications
538(1)
Audit
538(2)
Design Dossier
539(1)
FMEA
540(5)
Standards
541(2)
Specification
543(1)
Manufacturing
543(2)
Index 545