Atnaujinkite slapukų nuostatas

El. knyga: Biomedical Photoacoustics

Edited by , Edited by
  • Formatas: 320 pages
  • Išleidimo metai: 24-Nov-2020
  • Leidėjas: Pan Stanford Publishing Pte Ltd
  • Kalba: eng
  • ISBN-13: 9781351336338
Kitos knygos pagal šią temą:
  • Formatas: 320 pages
  • Išleidimo metai: 24-Nov-2020
  • Leidėjas: Pan Stanford Publishing Pte Ltd
  • Kalba: eng
  • ISBN-13: 9781351336338
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

As a fast-growing imaging technology, photoacoustic (PA) imaging synergistically combines electromagnetic and ultrasonic waves providing higher contrast and resolution than conventional ultrasound imaging. This book presents the latest developments in this field, especially the advances in the detection of diseases using newly developed PA techniques. Organized in seven chapters, it covers philosophy and technological fundamentals of photoacoustics, key techniques related to fast PA imaging, PA microscopy, PA endoscopy techniques, PA viscoelastic imaging, all-optical non-contact PA imaging technology, and PA imaging’s prospects in the medical market. As the new generation of medical ultrasound, PA imaging will become a powerful modality in the field of medical imaging in the future.

Preface xi
1 Fundamentals of Photoacoustics 1(32)
1.1 Introduction
1(3)
1.2 Basic Theories for Photoacoustics
4(13)
1.2.1 Thermoelastic Regime
4(7)
1.2.2 Photochemical Process
11(2)
1.2.3 Cavitation, Gas Evolution, and Boiling
13(3)
1.2.4 Optical Breakdown or Plasma Formation
16(1)
1.3 Basic Theory for Nanoprobe-Based Photoacoustics
17(4)
1.4 Brief Introduction to Photoacoustic Techniques
21(12)
1.4.1 PA Spectroscopy
22(1)
1.4.2 PA Microscopy, Tomography, and Endoscopy
23(1)
1.4.3 PA Doppler Flowmetry
24(2)
1.4.4 PA Thermometry
26(7)
2 Fast Photoacoustic Imaging Technology 33(38)
2.1 Multi-Element Array Photoacoustic Detection Technology
33(4)
2.1.1 The Concept of Single-Element Photoacoustic Detection
33(2)
2.1.2 The Concept of Multi-Element Photoacoustic Detection
35(2)
2.2 Multi-Element Array Photoacoustic Detection Algorithm
37(4)
2.2.1 Filter Back Projection Algorithm
37(3)
2.2.2 The Adaptive Projection Algorithm
40(1)
2.3 Multi-Element Array Photoacoustic Imaging System
41(9)
2.3.1 Multi-Element Date Collection System
41(2)
2.3.2 Multi-Element Linear Transducer
43(3)
2.3.3 Multi-Element Ring Transducer
46(1)
2.3.4 Multi-Element Flexible Transducer
47(3)
2.4 Multi-Element Array Photoacoustic Imaging Medical Applications
50(21)
2.4.1 Photoacoustic Imaging of Breast Cancer
50(2)
2.4.2 Photoacoustic Imaging of Heart Lesion
52(3)
2.4.3 Photoacoustic Imaging of Prostate Disease
55(1)
2.4.4 Photoacoustic Imaging of the Eye
56(2)
2.4.5 Diagnostic Photoacoustic Imaging
58(1)
2.4.6 Photoacoustic Imaging of Brain Disease and Function
59(2)
2.4.7 Diagnostic Photoacoustic Imaging
61(10)
3 Photoacoustic Microscopy 71(44)
3.1 Introduction to Photoacoustic Microscopy
71(2)
3.2 Optical-Resolution Photoacoustic Microscopy
73(9)
3.2.1 System for OR-PAM
73(3)
3.2.2 Multi-Wavelength OR-PAM
76(2)
3.2.3 Fast Variable Focus OR-PAM Using an Electrically Tunable Lens
78(4)
3.3 Acoustic-Resolution Photoacoustic Microscopy
82(6)
3.3.1 Dark-Field Confocal AR-PAM
84(2)
3.3.2 AR-PAM Using Multimode Fiber Bundle
86(2)
3.4 Biological Applications of Acoustic-Resolution Photoacoustic Microscopy
88(9)
3.4.1 Photoacoustic Identification of Sentinel Lymph Nodes and Lymphatic Systems
89(4)
3.4.2 Photoacoustic Imaging of Gastrointestinal Tract
93(1)
3.4.3 Whole-Body Photoacoustic Imaging of Small Animals
94(3)
3.4.4 Conclusion
97(1)
3.5 Single-Wavelength Excited Photoacoustic- Fluorescence Microscopy
97(18)
3.5.1 Introduction
98(2)
3.5.2 Photoacoustic-Fluorescence Microscopy Imaging System
100(2)
3.5.3 Single-Wavelength Excited Photoacoustic-Fluorescence Microscopy for in vivo pH Mapping
102(5)
3.5.4 Conclusion
107(8)
4 Photoacoustic Endoscopy and Its Biomedical Applications 115(56)
4.1 Introduction
115(1)
4.2 Reconstruction Algorithm of Photoacoustic Endoscopy
116(6)
4.2.1 Endoscopic Photoacoustic Tomography Algorithm
116(4)
4.2.2 Multi-Wavelength Excitation Endoscopic Photoacoustic Component Imaging Algorithm
120(2)
4.3 Photoacoustic Endoscopy
122(16)
4.3.1 Photoacoustic Endoscopy System
123(11)
4.3.1.1 The first photoacoustic endoscope
123(1)
4.3.1.2 A 2.5 mm diameter photoacoustic endoscope
124(2)
4.3.1.3 Catheter-based photoacoustic endoscope
126(3)
4.3.1.4 Optical-resolution photoacoustic endoscope
129(2)
4.3.1.5 Ring transducer array-based photoacoustic endoscope
131(1)
4.3.1.6 Multi-modalities photoacoustic endoscope
132(2)
4.3.2 Biomedical Applications of Photoacoustic Endoscopy
134(4)
4.3.2.1 Photoacoustic endoscope of melanoma tumor in rat model
134(1)
4.3.2.2 Photoacoustic endoscope of internal organs in animal model in vivo
135(3)
4.4 Intravascular Photoacoustic Endoscopy
138(33)
4.4.1 Intravascular Photoacoustic Probe
139(8)
4.4.2 High-Speed Intravascular Photoacoustic System
147(3)
4.4.3 Ex vivo Characterization of Atherosclerosis with Intravascular Photoacoustic Tomography
150(7)
4.4.4 In vivo Characterization of Atherosclerosis with Intravascular Photoacoustic Tomography
157(3)
4.4.5 Inflammation-Targeted Intravascular Photoacoustic Tomography
160(11)
5 Photoacoustic Viscoelasticity Imaging Technique 171(28)
5.1 Introduction
171(1)
5.2 Photoacoustic Elastography
171(4)
5.3 Photoacoustic Viscoelasticity Imaging
175(19)
5.3.1 Method
176(2)
5.3.2 PAVEI System
178(3)
5.3.3 Medical Applications
181(7)
5.3.3.1 PAVEI for tumor detection
181(2)
5.3.3.2 PAVEI for atherosclerosis characterization
183(5)
5.3.4 Integrated PA and PAVEI for Structural and Mechanical Features Characterization of Atherosclerosis
188(3)
5.3.5 PAVE Endoscopy for Atherosclerosis Characterization
191(3)
5.4 Discussion and Conclusion
194(5)
6 All-Optical Photoacoustic Technology 199(32)
6.1 Introduction
199(4)
6.2 The Principle of the Noncontact All-Optical Photoacoustic Imaging
203(3)
6.3 The Noncontact All-Optical Photoacoustic Microscopy
206(6)
6.3.1 Noncontact All-Optical Photoacoustic Microscopy
206(2)
6.3.2 The Bandwidth of the Noncontact Photoacoustic Microscopy
208(1)
6.3.3 The Lateral Resolution of the System
208(2)
6.3.4 Mimicking and in vivo Experimental Results
210(2)
6.3.4.1 Mimicking experiment
210(1)
6.3.4.2 In vivo experiment
211(1)
6.4 Multi-Modality Photoacoustic Imaging System
212(19)
6.4.1 Optically Integrated Dual-Mode Image System of Combined Photoacoustic Microscopy and Optical Coherence Tomography
213(2)
6.4.2 The Phantom and in vivo Experiments of the Optically Integrated Dual-Mode PAM-OCT System
215(4)
6.4.3 The Optically Integrated Tri-Modality Image System of Combined Photoacoustic Microscopy, Optical Coherence Tomography, and Fluorescence Imaging
219(2)
6.4.4 The Phantom and in vivo Experiments of Optically Integrated Tri-Modality AOPAM-OCT-FLM System
221(10)
7 Nanoprobes as Contrast Agents for Biomedical Photoacoustic Imaging 231(68)
7.1 Introduction
232(1)
7.2 Nanoprobes as Contrast Agents for PAI
233(30)
7.2.1 Dye-Related Nanoprobes
235(4)
7.2.1.1 Indocyanine green
235(3)
7.2.1.2 Other dyes
238(1)
7.2.2 Gold-Based Nanoprobes
239(5)
7.2.2.1 Gold nanospheres
239(1)
7.2.2.2 Gold nanorods
239(2)
7.2.2.3 Gold nanoshells
241(1)
7.2.2.4 Gold nanocages
241(1)
7.2.2.5 Other gold-based nanoprobes
242(2)
7.2.3 Carbon Nanoparticles
244(6)
7.2.3.1 Carbon nanotubes
244(4)
7.2.3.2 Graphene
248(2)
7.2.4 Transition Metal Chalcogenide-Based Nanoprobes
250(3)
7.2.5 Other Related Nanomaterials
253(8)
7.2.5.1 Perfluorocarbon nanodroplets
253(4)
7.2.5.2 Organic polymer-related nanoparticles
257(4)
7.2.6 Reporter Genes
261(2)
7.3 Biomedical Application of Nanoprobe-Mediated PAI
263(11)
7.3.1 PAI for Diagnosis and Monitoring
264(4)
7.3.2 Tumor Microenvironment Monitoring
268(3)
7.3.3 Imaging-Guided Tumor Therapy
271(3)
7.4 Conclusions and Future Directions
274(25)
Index 299
Sihua Yang received his doctoral degree in optics in 2009 at South China Normal University, China. Currently, he is professor and vice dean at the College of Biophotonics, Institute of Life Science, South China Normal University. imaging.

Da Xing received his doctorate in engineering from Harbin Institute of Technology, China, in 1989 and in physics from the University of Electro-Communications (UEC), Japan, in 1991. His present research activities are in biophotonics, including bio-molecular spectroscopy, noninvasive photoacoustic imaging, microfluidics, and optical imaging of biometabolism.