Atnaujinkite slapukų nuostatas

Biomimetic Technologies: Principles and Applications [Kietas viršelis]

Edited by (Aalborg University, Denmark)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies.Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications.

Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG’s) and biologically inspired antenna arrays.

  • Includes a solid overview of modern artificial intelligence as background to the principles of biomimetic engineering
  • Reviews a selection of key bio-inspired materials and sensors, highlighting their current strengths and future potential
  • Features cutting-edge examples of biomimetic technologies employed for a broad range of applications

Daugiau informacijos

A fascinating guide to the theoretical principles and practical applications of this ground-breaking, nature-inspired technology
Contributors xi
Woodhead Publishing Series in Electronic and Optical Materials xv
Preface xxi
Part One Principles and Materials for Biomimetic Technologies
1(66)
1 Synthesis of molecular biomimetics
3(30)
F.T.C. Moreira
J.R.L. Guerreiro
L. Brandao
M.G.F. Sales
1.1 Introduction
3(1)
1.2 Building blocks
4(6)
1.3 Bottom-up arrangement
10(6)
1.4 Supramolecular organization
16(7)
1.5 Conclusions and perspectives
23(10)
References
24(9)
2 Bio-inspired fiber composites
33(20)
C. Santulli
2.1 Introduction
33(1)
2.2 Biological materials
34(1)
2.3 Sources of bio-inspiration
35(3)
2.4 Multifunctional bio-inspired composites
38(7)
2.5 Difficulties in applying bio-inspiration to composites: the case of superhydrophobicity
45(1)
2.6 Conclusions and future perspectives
45(8)
References
47(6)
3 Solving the bio-machine interface---a synthetic biology approach
53(14)
O. Yarkoni
D.J. Frankel
3.1 Introduction
53(1)
3.2 Definition of the bio-machine interface
53(1)
3.3 Historical perspective
54(1)
3.4 Cells as biosensors
55(2)
3.5 Difficulties in addressing the bio-electronic interface
57(1)
3.6 Synthetic biology applied to the bio-electronic interface
58(1)
3.7 Genetic programs that perform signal processing
59(2)
3.8 Optogenetics for interfacing cells/tissue with machines
61(3)
3.9 Conclusions
64(3)
References
65(2)
Part Two Bio-Inspired Sensors
67(94)
4 Biomimetic tactile sensing
69(24)
R. Dahiya
C. Oddo
A. Mazzoni
H. Jorntell
4.1 Introduction
69(1)
4.2 Human sense of touch
70(3)
4.3 Biomimetic artificial touch
73(7)
4.4 Case study of tactile sensing technology: the POSFET device
80(4)
4.5 Other examples of bio-inspired tactile sensing
84(1)
4.6 Conclusion
85(8)
Acknowledgments
86(1)
References
86(7)
5 Bio-inspired hair-based inertial sensors
93(28)
H. Droogendijk
M.J. de Boer
R.G.P. Sanders
G.J.M. Krijnen
5.1 Introduction
93(1)
5.2 Hair structures for inertial sensing
94(2)
5.3 Cricket-inspired accelerometer
96(8)
5.4 Fly-inspired gyroscope
104(10)
5.5 Bio-inspiration continued
114(1)
5.6 Conclusions
115(6)
Acknowledgments
115(1)
References
115(6)
6 Artificial olfactory sense and recognition system
121(20)
H. Araki
S. Omatu
6.1 Introduction
121(1)
6.2 The human olfactory sense and creating common perceptions of odors
122(1)
6.3 The olfactory sensor system for the e-nose
123(10)
6.4 Olfactory classification---data processing
133(5)
6.5 Conclusions
138(3)
References
139(2)
7 Bio-inspired engineered sonar systems based on the understanding of bat echolocation
141(20)
S. Kim
7.1 Introduction
141(1)
7.2 Background
141(7)
7.3 Learning from bats
148(7)
7.4 Bio-inspired sonar applications
155(2)
7.5 Summary and conclusions
157(4)
Acknowledgment
157(1)
References
157(4)
Part Three Biomimetic Actuators
161(64)
8 Conducting interpenetrating polymer networks actuators for biomimetic vision system
163(18)
N. Festin
C: Plesse
C. Chevrot
P. Pirim
F. Vidal
8.1 Introduction
163(3)
8.2 Interpenetrated polymer network as solid polymer electrolyte
166(4)
8.3 Conducting interpenetrating polymer networks actuators
170(2)
8.4 Biomimetic vision systems
172(4)
8.5 Conclusion
176(5)
Acknowledgment
177(1)
References
177(4)
9 Self-oscillating polymer gels as novel biomimetic materials
181(18)
R. Yoshida
9.1 Introduction
181(2)
9.2 Design of self-oscillating polymer gel
183(1)
9.3 Control of self-oscillating chemomechanical behaviors
184(4)
9.4 Design of biomimetic soft actuators
188(1)
9.5 Design of autonomous mass transport systems
189(3)
9.6 Self-oscillating fluids
192(2)
9.7 Future prospects
194(5)
References
195(4)
10 Biomimetic muscle---The slipping/sliding friction mechanism (SFM) for dynamic agile animal robots
199(26)
F. Nickols
10.1 The need for a biomimetic muscle
199(1)
10.2 Review of biomimetic artificial muscles
200(2)
10.3 Reasons for the inadequate performance of existing biomimetic muscles
202(2)
10.4 Theory and definitions
204(3)
10.5 Working principle of biological skeletal muscle
207(8)
10.6 Modeling skeletal muscle
215(1)
10.7 Description of the SFM
216(3)
10.8 Model of the SFM
219(1)
10.9 SFM basic control methodology
220(3)
10.10 Conclusions and future work
223(2)
References
223(2)
Part Four Applications of Biomimetic Technologies
225(134)
11 Artificial intelligence through symbolic connectionism---A biomimetic rapprochement
227(26)
A. Ellery
11.1 Introduction
227(3)
11.2 It is a question of language
230(2)
11.3 Localist symbolic connectionism
232(6)
11.4 Distributed symbolic connectionism
238(3)
11.5 Symbolic connectionism in biological models
241(1)
11.6 Neurofuzzy systems
241(5)
11.7 Future trends
246(7)
References
247(6)
12 Implementation of biomimetic central pattern generators on field-programmable gate array
253(20)
M. Ambroise
T. Levi
S. Saighi
12.1 Introduction
253(1)
12.2 State of the art on CPG implementation
254(2)
12.3 Stakes and challenges
256(17)
References
267(6)
13 Bio-inspired multi-robot systems
273(28)
B. Ranjbar-Sahraei
K. Tuyls
I. Caliskanelli
B. Broeker
D. Claes
S. Alers
G. Weiss
13.1 Introduction
273(1)
13.2 Background
274(6)
13.3 Ant-inspired multi-robot coordination
280(5)
13.4 Bee-inspired multi-robot coordination
285(8)
13.5 Future trends
293(1)
13.6 Conclusions
294(7)
References
295(6)
14 Bio-inspired climbing robots
301(20)
M. Tavakoli
C. Viegas
14.1 Introduction
301(1)
14.2 Bio-inspired adhesion technologies
302(7)
14.3 Bio-inspired locomotion mechanisms
309(5)
14.4 Size and current technology constrains
314(1)
14.5 Future trends
315(6)
References
316(5)
15 Locomotion rhythm generation using pulse-type hardware neural networks for quadruped robots
321(14)
K. Saito
Y. Ikeda
M. Takato
F. Uchikoba
15.1 Introduction
321(1)
15.2 Quadruped robot system
322(1)
15.3 Mechanical components of the quadruped robot
322(3)
15.4 Electrical components of the quadruped robot
325(6)
15.5 Results
331(1)
15.6 Conclusions
332(3)
Acknowledgment
332(1)
References
333(2)
16 Biologically inspired antenna array design using Ormia modeling
335(24)
M. Akcakaya
C. Muravchik
A. Nehorai
16.1 Introduction
335(1)
16.2 Biologically inspired coupled antenna array for DOA estimation
336(11)
16.3 Biologically inspired coupled antenna beam pattern design
347(3)
16.4 Numerical results
350(6)
16.5 Summary
356(3)
Appendix A Definition of block matrix operators 359(2)
Appendix B Computation of the electromagnetic coupling matrix C 361(1)
References 361(4)
Index 365