Atnaujinkite slapukų nuostatas

El. knyga: Biophysical Tools for Biologists: In Vivo Techniques

Volume editor (Professor of Biochemistry and Marine Biology at Northeastern University), Volume editor (University of Mississippi Medical Center, Jackson, USA)
  • Formatas: PDF+DRM
  • Serija: Methods in Cell Biology
  • Išleidimo metai: 19-Jan-2009
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080919782
  • Formatas: PDF+DRM
  • Serija: Methods in Cell Biology
  • Išleidimo metai: 19-Jan-2009
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080919782

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Driven in part by the development of genomics, proteomics, and bioinformatics as new disciplines, there has been a tremendous resurgence of interest in physical methods to investigate macromolecular structure and function in the context of living cells. This volume in Methods in Cell Biology is devoted to biophysical techniques in vivo and their applications to cellular biology. The volume covers methods-oriented chapters on fundamental as well as cutting-edge techniques in molecular and cellular biophysics. This book is directed toward the broad audience of cell biologists, biophysicists, pharmacologists, and molecular biologists who employ classical and modern biophysical technologies or wish to expand their expertise to include such approaches. It will also interest the biomedical and biotechnology communities for biophysical characterization of drug formulations prior to FDA approval.

* Describes techniques in the context of important biological problems
* Delineates critical steps and potential pitfalls for each method

Daugiau informacijos

Single-source reference that details state-of-the-art biophysical techniques
Contributors xv
Preface xix
SECTION I Fluorescence Methods
In Vivo Applications of Fluorescence Correlation Spectroscopy
Huimin Chen
Elaine R. Farkas
Watt W. Webb
Introduction
4(8)
PCS Technology
12(4)
Applications of In Vivo PCS
16(9)
Future Directions for In Vivo FCS
25(3)
Conclusions
28(10)
References
28(10)
Molecular Sensors Based on Fluorescence Resonance Energy Transfer to Visualize Cellular Dynamics
Bharath Ananthanarayanan
Qiang Ni
Jin Zhang
Introduction
38(1)
Basic Principles of FRET-Based Molecular Sensors
38(7)
Methods
45(7)
A Case Study of P13K/Akt Signaling Pathway
52(2)
Discussion and Conclusion
54(6)
References
54(6)
A Fluorescent Window Into Protein Folding and Aggregation in Cells
Zoya Ignatova
Lila M. Gierasch
Introduction
60(1)
Rationale
61(1)
Methods
61(7)
Summary
68(4)
References
69(3)
Combining Microfluidics and Quantitative Fluorescence Microscopy to Examine Pancreatic Islet Molecular Physiology
Jonathan V. Rocheleau
David W. Piston
Introduction
72(1)
Rationale
73(6)
Methods and Materials
79(9)
Discussion
88(8)
References
89(7)
SECTION II Microscopic Methods
Imaging in Depth: Controversies and Opportunities
Don O'Malley
Introduction
96(2)
Basic Imaging Methodologies
98(2)
Forays Deeper into Depth
100(18)
Discussion: Terms of Resolution
118(2)
Summary
120(10)
References
120(10)
Principles and Practice in Electron Tomography
Bruce F. McEwen
Christian Renken
Michael Marko
Carmen Mannella
Introduction
130(1)
Specimen Preparation
131(7)
Data Collection for Electron Tomography
138(6)
Computation of an Electron Tomographic Reconstruction
144(7)
Interpretation of Electron Tomographic Reconstructions
151(10)
Summary and Future Directions
161(9)
References
162(8)
Total Internal Reflection Fluorescence Microscopy
Daniel Axelrod
Introduction
170(1)
Rationale
171(4)
Theoretical Principles
175(11)
Combinations of TIRF with Other Techniques
186(10)
Optical Configurations and Setup
196(12)
General Experimental Considerations
208(4)
Summary: TIRF Versus Other Optical Section Microscopies
212(12)
References
213(11)
Spatiotemporal Dynamics in Bacterial Cells: Real-Time Studies with Single-Event Resolution
Ido Golding
Edward C. Cox
Introduction
224(1)
Studying Cellular Dynamics with Single-Event Resolution
225(2)
Methods
227(21)
Summary and General Lessons for Following Discrete Events
248(6)
References
249(5)
Counting Proteins in Living Cells by Quantitative Fluorescence Microscopy with Internal Standards
Jian-Qiu Wu
Chad D. McCormick
Thomas D. Pollard
Introduction
254(3)
Experimental Methods
257(10)
Data Analysis
267(2)
Conclusions
269(7)
References
272(4)
Infrared and Raman Microscopy in Cell Biology
Christian Matthaus
Benjamin Bird
Milos Miljkovic
Tatyana Chernenko
Melissa Romeo
Max Diem
Introduction
276(2)
Methods
278(10)
Results and Discussion
288(19)
Conclusions
307(3)
References
307(3)
Imaging Fluorescent Mice In Vivo Using Confocal Microscopy
Stephen G. Turney
Jeff W. Lichtman
Introduction
310(1)
Rationale
310(11)
Methods and Materials
321(4)
Discussion and Summary
325(5)
References
326(4)
Nanoscale Biological Fluorescence Imaging: Breaking the Diffraction Barrier
Travis J. Gould
Samuel T. Hess
Introduction
330(5)
Theory and Rationale
335(3)
Methods
338(7)
Materials
345(2)
Discussion
347(9)
Summary
356(6)
References
356(6)
SECTION III Methods at the In Vitro/In Vivo Interface
Imaging of Cells and Tissues with Mass Spectrometry: Adding Chemical Information to Imaging
Tyler A. Zimmerman
Eric B. Monroe
Kevin R. Tucker
Stanislav S. Rubakhin
Jonathan V. Swedler
Introduction
362(2)
Instrumentation
364(8)
Sample Preparation for MSI
372(10)
Image Acquisition and Data Analysis
382(2)
Specialized Methods
384(1)
Summary and Future Directions
385(7)
References
386(6)
Electron Microscopy of Hydrated Samples
Winston Timp
Paul Matsudaira
Introduction
392(1)
Basic SEM
392(4)
Environmental SEM
396(5)
Wet SEM
401(3)
Summary
404(8)
References
406(6)
SECTION IV Methods for Diffusion, Viscosity, Force and Displacement
Live-Cell Single-Molecule Force Spectroscopy
Terrence M. Dobrowsky
Porntula Panorchan
Konstantinos Konstantopoulos
Denis Wirtz
Introduction
412(8)
Materials and Instrumentation
420(1)
Procedures
421(8)
Pearls and Pitfalls
429(1)
Concluding Remarks
430(4)
References
430(4)
Magnetic Manipulation for Force Measurements in Cell Biology
E. Tim O'Brien
Jeremy Cribb
David Marshburn
Russell M. Taylor II
Richard Superfine
Introduction
434(2)
Sample Preparation
436(3)
Video and Laser-Based Magnetic Systems
439(1)
Calibration of Pole Tips
440(2)
Pole Configurations
442(1)
Modes of Magnet Controls
442(2)
Cell Experiments with Magnetics
444(2)
Driven Bead Rheology of Biologic Fluids
446(3)
Conclusions
449(3)
References
449(3)
Application of Laser Tweezers to Studies of Membrane-Cytoskeleton Adhesion
Drazen Raucher
Introduction
452(3)
Materials and Methods
455(5)
Tether Force Measurements of the Adhesion Energy Between the Plasma Membrane and the Cortical Cytoskeleton
460(4)
Concluding Remarks
464(4)
References
465(3)
Sensing Cytoskeletal Mechanics by Ballistic Intracellular Nanorheology (BIN) Coupled with Cell Transfection
Melissa S. Thompson
Denis Wirtz
Introduction
468(5)
Materials and Instrumentation
473(4)
Procedures
477(7)
Pearls and Pitfalls
484(1)
Concluding Remarks
485(3)
References
485(3)
Mechanical Response of Cytoskeletal Networks
Margaret L. Gardel
Karen E. Kasza
Clifford P. Brangwynne
Jiayu Liu
David A. Weitz
Introduction
488(1)
Rheology
489(4)
Cross-Linked F-Actin Networks
493(11)
Effects of Microtubules in Composite F-Actin Networks
504(8)
Intermediate Filament Networks
512(3)
Conclusions and Outlook
515(7)
References
516(6)
Automated Spatial Mapping of Microtubule Catastrophe Rates in Fission Yeast
Christian Tischer
Damian Brunner
Marileen Dogterom
Introduction
522(1)
Methods
523(11)
Results
534(1)
Discussion
535(8)
References
537(6)
SECTION V Techniques for Protein Activity and Protein-Protein Interactions
Quantitative Fluorescence Lifetime Imaging in Cells as a Tool to Design Computational Models of Ran-Regulated Reaction Networks
Petr Kalab
Arnd Pralle
Quantitative Imaging and Systems Modeling as a Tool in Cell Biology---The Rationale and Strategy
543(3)
Quantitative Detection of Biochemical Interactions by FLIM
546(6)
Technical Considerations for FLIM in Live Cells
552(5)
Analysis of the Mitotic RanGTP Gradient Function by FLIM and Computational Modeling
557(5)
Materials and Methods
562(8)
References
565(5)
Quantitation of Protein---Protein Interactions: Confocal FRET Microscopy
Ammasi Periasamy
Horst Wallrabe
Ye Chen
Margarida Barroso
Introduction
570(1)
Rationale
571(1)
Material and Methods
572(10)
Results and Discussion
582(13)
Summary
595(7)
References
595(7)
SECTION VI Computational Modeling
Stochastic Modeling Methods in Cell Biology
Sean X. Sun
Ganhui Lan
Erdinc Atilgan
Introduction
602(5)
Stochastic Methods in Signaling and Genetic Networks
607(2)
Molecular Motors and the Inclusion of Biomolecular Structure in Stochastic Models
609(4)
Cytoskeleton and Cytoskeletal Network Structures
613(4)
Procedures
617(1)
Discussion and Concluding Remarks
618(1)
Appendix
619(5)
References
620(4)
Computational Modeling of Self-Organized Spindle Formation
Stuart C. Schaffner
Jorge V. Jose
Introduction
624(1)
Rationale
625(4)
Methods
629(17)
Materials
646(1)
Discussion and Summary
647(1)
Appendix A
647(1)
Appendix B
648(5)
References
651(2)
Index 653(16)
Volumes in Series 669
Professor of Biochemistry and Marine Biology at Northeastern University, promoted 1996. Joined Northeastern faculty in 1987. Previously a faculty member in Dept. of Biochemistry at the University of Mississippi Medical Center, 1983-1987.Principal Investigator in the U.S. Antarctic Program since 1984. Twelve field seasons "on the ice" since 1981. Research conducted at Palmer Station, Antarctica, and McMurdo Station, Antarctica.Research areas: Biochemical, cellular, and physiological adaptation to low and high temperatures. Structure and function of cytoplasmic microtubules and microtubule-dependent motors from cold-adapted Antarctic fishes. Regulation of tubulin and globin gene expression in zebrafish and Antarctic fishes. Role of microtubules in morphogenesis of the zebrafish embryo. Developmental hemapoiesis in zebrafish and Antarctic fishes. UV-induced DNA damage and repair in Antarctic marine organisms.