Atnaujinkite slapukų nuostatas

El. knyga: Bioremediation of Pollutants: From Genetic Engineering to Genome Engineering

Edited by (Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India), Edited by (Research Scientist, University Center for Research and Development (UCRD), Chandigarh University, Mohali, Punjab, India)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 30-May-2020
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128190265
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 30-May-2020
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128190265
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Bioremediation of Pollutants: From Genetic Engineering to Genome Engineering provides insights into genetic and genome engineering strategies in bioremediation, covering a wide range of microorganisms that are key to the removal of pollutants. The book includes discussions on root engineering, transgenic plants, metagenomics, bioreactors, molecular biology tools, genome editing, synthetic biology, microbial indicators, biosurfactants, biofilms, genetically modified organisms, and engineered fungi and bacteria. Presented by top experts in the field, this resource captures the essence and diversity of bioremediation methodologies in a single source.

Students and beginners in environmental science, researchers, soil scientists, genetic and genome engineers, stakeholders and policymakers interested in improving this rapidly growing area of research will find this resource extremely useful.

  • Draws together research from eminent scientists from across the globe in the areas of phytoremediation and microbial remediation
  • Includes case studies of engineered bacterial remediation
  • Covers the genome editing CRISPR-Cas9 system that has been less explored in plants and microorganisms
List of contributors
xv
About the editors xix
Foreword xxi
Preface xxiii
Acknowledgments xxv
Part I Phytoremediation
1(142)
1 Phytoremediation---a holistic approach for remediation of heavy metals and metalloids
3(14)
Sumya Pathak
Aditya Vikram Agarwal
Vimal Chandra Pandey
1.1 Introduction
3(2)
1.2 Heavy metals and metalloids
5(1)
1.3 Bioremediation
5(2)
1.4 Phytoremediation
7(1)
1.5 Strategies for phytoremediation
7(1)
1.6 Biological mechanism of heavy-metal phytoremediation
8(1)
1.7 Factors affecting heavy-metal phytoremediation
9(1)
1.8 Plants used for phytoremediation
10(1)
1.9 Enhancing phytoremediation
11(1)
1.10 Advantages and disadvantages of phytoremediation
12(1)
1.11 Conclusion
13(1)
Acknowledgments
13(1)
Conflict of interest
13(1)
References
14(3)
2 Role of potential native weeds and grasses for phytoremediation of endocrine-disrupting pollutants discharged from pulp paper industry waste
17(22)
Pooja Sharma
Surendra Pratap Singh
Siddhartha Pandey
Arti Thanki
Nitin Kumar Singh
2.1 Introduction
17(2)
2.2 Physicochemical analysis of wastewater of pulp paper industry
19(1)
2.3 Endocrine-disrupting pollutants from pulp paper industry waste
20(5)
2.4 Phytotoxicity and genotoxicity of pulp paper industry waste
25(2)
2.5 Phytoremediation of heavy metals from complex organometallic pollutants
27(1)
2.6 Strategy of phytoremediation
28(3)
2.7 Heavy metals uptake by transport, translocation, and transformation
31(1)
2.8 Toxicity of heavy metals on human health
32(2)
2.9 Conclusion and future scope
34(1)
Acknowledgment
34(1)
References
34(5)
3 Transgenic plants in phytoremediation of organic pollutants
39(18)
Santosh Kumar Mishra
Priya Ranjan Kumar
Ravi Kant Singh
3.1 Introduction
39(2)
3.2 Phytoremediation
41(3)
3.3 Some Selected Plants Used for Phytoremediation
44(1)
3.4 Transgenic plants in phytoremediation
45(1)
3.5 Biochemistry of Phytoremediation
45(2)
3.6 Role of transgenic plants in phytoremediation of organic pollutants
47(2)
3.7 Degradative pathways in plants
49(1)
3.8 Role of cytochrome P450s in plants
49(1)
3.9 Glutathione 5-transferases and its role in transgenic plants for phytoremediation
50(1)
3.10 Transgenic plants over expressing glutathione S-transferases for enhanced degradation of organic pollutants
50(2)
3.11 Conclusion
52(1)
References
52(3)
Further reading
55(2)
4 Progress, prospects, and challenges of genetic engineering in phytoremediation
57(68)
Shweta Jha
4.1 Introduction
57(2)
4.2 Overview of biotechnological approaches to improve efficiency of phytoremediation
59(46)
4.3 Major concerns and future perspectives
105(3)
Acknowledgments
108(1)
References
108(17)
5 Recent advances in phytoremediation using genome engineering CRISPR-Cas9 technology
125(18)
Pallavi Saxena
Nitin Kumar Singh
Harish
Amit Kumar Singh
Siddhartha Pandey
Arti Thanki
Tara Chand Yadav
5.1 Introduction
125(2)
5.2 Recent advances in genetic engineering using CRISPR---Cas9 for phytoremediation
127(6)
5.3 Future perspective
133(2)
5.4 Conclusion
135(1)
References
135(8)
Part II Microbial Remediation
143(302)
6 Endophytes---the hidden world for agriculture, ecosystem, and environmental sustainability
145(16)
Shubhi Srivastava
Madhubanti Chaudhuri
Vimal Chandra Pandey
6.1 Introduction
145(1)
6.2 Plant growth-promoting endophytes
146(1)
6.3 Natural products from endophytes
146(7)
6.4 Endophyte-assisted phytoremediation
153(1)
6.5 Conclusion
154(1)
References
154(7)
7 Engineering bacterial aromatic dioxygenase genes to improve bioremediation
161(26)
Vachaspati Mishra
S. Veeranna
Jitendra Kumar
7.1 Introduction
161(1)
7.2 Oxygenases are the key enzymes in aromatic degradation
162(10)
7.3 Molecular interventions targeting dioxygenase genes to understand aromatic compound degradation
172(3)
7.4 Dioxygenase from organisms other than Pseudomonas
175(1)
7.5 Ethical issues pertaining to bioremediation trials
176(1)
7.6 Conclusion
176(1)
Acknowledgments
177(1)
Disclosure statement
177(1)
References
177(8)
Further reading
185(2)
8 Microbial remediation progress and future prospects
187(28)
Monu Jariyal
Manish Yadav
Nitin Kumar Singh
Suman Yadav
Iti Sharma
Swati Dahiya
Arti Thanki
8.1 Introduction
187(2)
8.2 Microorganisms associated with bioremediation
189(9)
8.3 Biodegradation and bioremediation
198(2)
8.4 Factors involved in microbial remediation
200(1)
8.5 Genetically engineered microbes and their role in degradation
201(4)
8.6 Optimization of bioremediation process
205(1)
8.7 Conclusion
206(1)
References
207(8)
9 Development of biologically-based activated carbon for advanced water and wastewater treatment process
215(12)
Ravi Kant Singh
Santosh Kumar Mishra
Balasubramanian Velramar
Priya Ranjan Kumar
9.1 Introduction
215(1)
9.2 Biological activated carbon process
216(2)
9.3 Mechanisms of pollutants degradation in biological activated carbon filtration
218(4)
9.4 Conclusion and future remarks
222(1)
References
223(4)
10 The role of microorganism in bioremediation for sustainable environment management
227(24)
Arun Kumar Pal
Jyotsna Singh
Ramendra Soni
Pooja Tripathi
Madhu Kamle
Vijay Tripathi
Pradeep Kumar
10.1 Introduction
227(1)
10.2 Types of bioremediation
228(1)
10.3 Types of microorganisms used in bioremediation
229(2)
10.4 Bioremediation of mined wasteland
231(1)
10.5 Bioremediations of landfill leachates
232(1)
10.6 Bioremediation of aqua culture waste
232(1)
10.7 Microbial nitrification and denitrification in sediments
233(1)
10.8 Bioremediations of contaminated soil and water
234(3)
10.9 Antibiotics bioremediation
237(3)
10.10 Biodegradability of antibiotics
240(1)
10.11 Antibiotic degradation in soil
240(1)
10.12 Bioremediation of dye from textile industry
240(1)
10.13 Degradation of dye
241(1)
10.14 Conclusion
241(1)
Author contributions
241(1)
Acknowledgment
241(1)
Conflicts of interest
241(1)
References
242(9)
11 Bioreactor and bioprocess technology for bioremediation of domestic and municipal wastewater
251(24)
Nitin Kumar Singh
Siddhartha Pandey
Rana Pratap Singh
Khalid Muzamil Gani
Manish Yadav
Arti Thanki
Tarun Kumar
11.1 Background
251(1)
11.2 Bioremediation: an overview
252(1)
11.3 Need of the wastewater treatment
252(1)
11.4 Wastewater treatment using biological processes
253(3)
11.5 Common operational stresses of bioreactors
256(2)
11.6 Case studies on field-scale bioreactors
258(11)
11.7 Conclusions
269(2)
References
271(4)
12 Metagenomics approach for bioremediation: challenges and perspectives
275(12)
Indra Mani
12.1 Introduction
275(1)
12.2 Metagenomics
276(2)
12.3 Use of shotgun metagenomics in bioremediation
278(1)
12.4 Use of metagenomics in bioremediation
278(4)
12.5 Conclusion, challenges, and future perspective
282(1)
Acknowledgments
282(1)
References
282(5)
13 Microbial bioremediation of industrial effluents and pesticides
287(16)
Gargi Bhattacharjee
Nisarg Gohil
Sachin Vaidh
Krunal Joshi
Gajendra Singh Vishwakarma
Vijai Singh
13.1 Introduction
287(2)
13.2 Microbial bioremediation of industrial effluents
289(2)
13.3 Microbial bioremediation of pesticides
291(2)
13.4 Microbial bioremediation of hydrocarbons
293(2)
13.5 Conclusion and future remarks
295(1)
Acknowledgements
296(1)
References
296(7)
14 Synthetic biology approaches for bioremediation
303(10)
Gargi Bhattacharjee
Nisarg Gohil
Vijai Singh
14.1 Introduction
303(1)
14.2 Overview of synthetic biology
304(2)
14.3 Prospects of synthetic biology in bioremediation
306(2)
14.4 Conclusion and future remarks
308(1)
Acknowledgment
309(1)
References
309(4)
15 Microbial indicators and biosensors for bioremediation
313(20)
Ankita Chaurasia
Nihal Mohammed
Molka Feki Tounsi
Heykel Trabelsi
15.1 Introduction
313(1)
15.2 Biosensors development
314(2)
15.3 Pollution monitoring
316(1)
15.4 Case studies
316(7)
15.5 Perspectives
323(1)
References
324(9)
16 Biosurfactant-based bioremediation
333(26)
Simranjeet Singh
Vijay Kumar
Satyender Singh
Daljeet Singh Dhanjal
Shivika Datta
Deepansh Sharma
Nitin Kumar Singh
Joginder Singh
16.1 Introduction
333(1)
16.2 Biosurfactants: surface-active compounds
334(2)
16.3 Biosurfactant-producing microbes
336(1)
16.4 Classification of biosurfactants
336(5)
16.5 Parameters regulating the properties of biosurfactants
341(3)
16.6 Biosurfactant for heavy metal remediation
344(1)
16.7 Biosurfactants for hydrocarbon remediation
345(1)
16.8 Biosurfactants production through genetic modification
346(1)
16.9 Conclusion and future perspectives
347(1)
References
347(12)
17 Engineered bacteria for bioremediation
359(16)
Gaurav Sanghvi
Arti Thanki
Siddhartha Pandey
Nitin Kumar Singh
17.1 Introduction
359(2)
17.2 Why microbes?
361(1)
17.3 Metabolic engineering
361(2)
17.4 Recombinant DNA technology
363(1)
17.5 Plasmids
363(1)
17.6 Expression systems
364(2)
17.7 Family shuffling and genome shuffling
366(1)
17.8 Omics and bioremediation
366(1)
17.9 Genomics
367(1)
17.10 Metagenomics
367(1)
17.11 Screening, assembling, and sequencing
368(1)
17.12 Metagenome sequencing techniques
368(1)
17.13 Florescence-activated cell sorting
368(1)
17.14 DNA microarrays
369(1)
17.15 Transcriptomics approach
369(1)
17.16 Novel approaches
370(1)
17.17 Future prospects for bioremediation
371(1)
References
371(4)
18 Biofilm in bioremediation
375(12)
Indra Mani
18.1 Introduction
375(2)
18.2 Strategies for use of biofilms in bioremediation
377(2)
18.3 Types of pollutants remediated by biofilms
379(1)
18.4 Current status of use of biofilm in bioremediation
380(2)
18.5 Conclusion, challenges, and future perspective
382(1)
Acknowledgments
382(1)
References
382(5)
19 Genetic engineering approaches for detecting environmental pollutants
387(16)
Nisarg Gohil
Gargi Bhattacharjee
Vijai Singh
19.1 Introduction
387(1)
19.2 Biosensors for detecting pollutants
388(6)
19.3 Conclusion and future remarks
394(1)
Acknowledgements
395(1)
References
395(8)
20 Current status, challenges and future of bioremediation
403(14)
Gajendra Singh Vishwakarma
Gargi Bhattacharjee
Nisarg Gohil
Vijai Singh
20.1 Introduction
403(1)
20.2 Bioremediation process and classification
403(2)
20.3 Current status of bioremediation
405(3)
20.4 Advancement in phytoremediation
408(1)
20.5 Challenges in bioremediation
409(2)
20.6 Conclusion and future remarks
411(1)
Acknowledgments
412(1)
References
412(5)
21 Engineered microbes and evolving plastic bioremediation technology
417(28)
Alka Kumari
Doongar R. Chaudhary
21.1 Introduction
417(2)
21.2 Stages of polymer biodegradation
419(5)
21.3 Biotechnological intrusion in bioremediation technology
424(2)
21.4 Genes in plastic degradation: an overview
426(2)
21.5 Synthetic biology approaches
428(7)
21.6 Conclusion and future remarks
435(1)
References
436(9)
Index 445
Dr Vijai Singh is a Professor and Dean (Research & Innovation) at School of Sciences, Indrashil University, Rajpur, Mehsana, Gujarat, India. He was an Associate Professor in the Department of Biosciences, School of Sciences, Indrashil University, Rajpur, Mehsana, Gujarat, India. Prior this this, he was an Assistant Professor in the Department of Biological Sciences and Biotechnology at the Institute of Advanced Research, Gandhinagar, India and also an Assistant Professor in the Department of Biotechnology at the Invertis University, Bareilly, India. Prior to that, he was a Postdoctoral Fellow in the Synthetic Biology Group at the Institute of Systems and Synthetic Biology, Paris, France and School of Energy & Chemical Engineering at the Ulsan National Institute of Science and Technology, Ulsan, South Korea. He received his Ph.D. in Biotechnology from the National Bureau of Fish Genetic Resources, Uttar Pradesh Technical University, Lucknow, India with a research focus on the development of molecular and immunoassays for diagnosis of Aeromonas hydrophila. His research interests are focused on building novel biosynthetic pathways for production of medically and industrially important biomolecules. Additionally, his laboratory is working on CRISPR-Cas9 tools for genome editing. He has more than 11 years of research and teaching experience in synthetic biology, metabolic engineering, bioinformatics, microbiology, and industrial microbiology. He has published 100 articles, 70 chapters, 15 books and 3 patents. He serves as an associate editor, editorial board member, and reviewer of several peer-reviewed journals. He is also a member of the Board of Study and Academic Council of Indrashil University and is the Member Secretary of the Institutional Biosafety Committee (IBSC) at the same University.

Dr. Vimal Chandra Pandey is an applied research scientist of phyto- and phycoremediation at Chandigarh University, India. He obtained his PhD from Dr. RML Avadh University and conducted post-doctoral research at Babasaheb Bhimrao Ambedkar University, India. Dr. Pandeys research focuses on the remediation and management of polluted sites using ecologically and socio-economically valuable plants and algae. His work focuses strongly on restoring ecosystem services and developing a bio-based economy in support of the UN SDGs. Dr. Pandey is a member of the IUCN commission on Ecosystem Management and the National Academy of Sciences, India. He is the author and editor of several books, including Elseviers Algae and Aquatic Macrophytes in Cities, Bioremediation of Pollutants, and more.