Atnaujinkite slapukų nuostatas

El. knyga: Biosensor Nanomaterials

Edited by (Ministry of Education, University of Wuhan, Wuhan, P.R. China), Edited by (Fordham University, Bronx, NY, USA), Edited by (Chinese Academy of Sciences, Chengdu, Wuhan, P.R. China), Edited by (North Dakota State University, Fargo, ND, USA)
  • Formatas: PDF+DRM
  • Išleidimo metai: 31-Mar-2011
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527635184
  • Formatas: PDF+DRM
  • Išleidimo metai: 31-Mar-2011
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527635184

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Biosensors are devices that detect the presence of microbials such as bacteria, viruses or a range biomolecules, including proteins, enzymes, DNA and RNA. For example, they are routinely applied for monitoring the glucose concentration in blood, quality analysis of fresh and waste water and for food control. Nanomaterials are ideal candidates for building sensor devces: where in just a few molecules can alter the properties so drastically that these changes may be easily detected by optical, electrical or chemical means. Recent advantages have radically increased the sensitivity of nanomaterial-based biosensors, making it possible to detect one particular molecule against a background of billions of others. Focusing on the materials suitable for biosensor applications, such as nanoparticles, quantum dots, meso- and nanoporous materials and nanotbues, this text enables the reader to prepare the respective nanomaterials for use in actual devices by appropriate functionalization, surface processing or directed self-assembly. The emphasis throughout is on electrochemical, optical and mechancial detection methods, leading to solutions for today's most challenging tasks. The result is a reference for researchers and developers, disseminating first-hand information on which nanomaterial is best suited to a particular application - and why.

Recenzijos

It is recommended for those interested in acquiring more insight knowledge of the latest developments in this still evolving topic.  (Materials Views, 8 July 2013)

 

Preface xi
List of Contributors
xv
1 New Micro- and Nanotechnologies for Electrochemical Biosensor Development
7(30)
Francesca Berti
Anthony P. F. Turner
1.1 Introduction
1(2)
1.2 Carbon Nanotubes
3(12)
1.2.1 Carbon Nanotubes Used in Catalytic Biosensors
4(6)
1.2.2 Carbon Nanotubes Used in Affinity Biosensors
10(5)
1.3 Conductive Polymer Nanostructures
15(8)
1.3.1 Conductive Polymer Nanostructures Used in Catalytic Biosensors
15(5)
1.3.2 Conductive Polymer Nanostructures Used in Affinity Biosensors
20(3)
1.4 Nanoparticles
23(7)
1.4.1 Nanoparticles Used in Catalytic Biosensors
23(1)
1.4.2 Nanoparticles Used in Affinity Biosensors
24(6)
1.5 Conclusions
30(7)
References
30(7)
2 Advanced Nanoparticles in Medical Biosensors
37(20)
Dan Fei
Songjun Li
Christian Cimorra
Yi Ge
2.1 Introduction
37(2)
2.2 Nanoparticles
39(13)
2.2.1 Gold Nanoparticles
39(4)
2.2.2 Magnetic Nanoparticles
43(1)
2.2.3 Quantum Dots
44(3)
2.2.4 Silica-Based Nanoparticles
47(1)
2.2.5 Dendrimers
48(2)
2.2.6 Fullerenes
50(2)
2.3 Conclusions and Outlook
52(5)
References
53(4)
3 Smart Polymeric Nanofibers Resolving Biorecognition Issues
57(16)
Ashutosh Tiwari
Ajay K. Mishra
Shivani B. Mishra
Rajeev Mishra
Songjun Li
3.1 Introduction
57(3)
3.2 Nanofibers
60(2)
3.2.1 pH-Sensitive Nanofibers
61(1)
3.2.2 Temperature-Responsive Nanofibers
61(1)
3.3 Electrospinning of Nanofibers
62(2)
3.4 Biorecognition Devices
64(5)
3.5 Conclusions
69(4)
References
70(3)
4 Fabrication and Evaluation of Nanoparticle-Based Biosensors
73(22)
Rhishikesh Mandke
Buddhadev Layek
Citanjali Sharma
Jagdish Singh
4.1 Introduction
73(1)
4.2 Nanoparticle-Based Biosensors and their Fabrication
74(8)
4.2.1 Types of Nanobiosensors
74(1)
4.2.1.1 Electrochemical Biosensors
75(1)
4.2.1.2 Calorimetric Biosensors
76(1)
4.2.1.3 Optical Biosensors
76(2)
4.2.1.4 Piezoelectric Biosensors
78(1)
4.2.2 Fabrication of Biosensors
78(1)
4.2.2.1 Immobilization of Biomolecules
78(2)
4.2.2.2 Conjugation of Biomolecules and Nanomaterials
80(1)
4.2.2.3 Newer Nanobiosensing Technologies
80(2)
4.3 Evaluation of Nanoparticle-Based Nanosensors
82(6)
4.3.1 Structural Characterization of Nanoparticle-Based Biosensors
82(1)
4.3.1.1 Scanning Electron Microscopy
82(1)
4.3.1.2 Transmission Electron Microscopy
83(1)
4.3.1.3 Atomic Force Microscopy
84(1)
4.3.1.4 X-Ray Diffraction
84(1)
4.3.1.5 X-Ray Photoelectron Spectroscopy
85(1)
4.3.1.6 UV/Visible Spectroscopy
85(1)
4.3.2 Functional Characterization of Nanoparticle-Based Biosensors
86(1)
4.3.2.1 Quartz Crystal Microbalance
86(1)
4.3.2.2 Ellipsometry
86(1)
4.3.2.3 Surface Plasmon Resonance
87(1)
4.3.2.4 Cyclic Voltammetry
87(1)
4.4 Applications of Nanoparticle-Based Biosensors
88(1)
4.5 Conclusions
89(6)
References
89(6)
5 Enzyme-Based Biosensors: Synthesis and Applications
95(22)
Shunsheng Cao
Juanrong Chen
Xin Jin
Weiwei Wu
Zhiyuan Zhao
5.1 Introduction
95(1)
5.2 Synthesis and Characterization of Biosensor Supports
96(8)
5.2.1 Carbon Nanotubes
98(1)
5.2.1.1 Characterization of Carbon Nanotubes
98(1)
5.2.1.2 Application of Carbon Nanotubes as Biosensor Supports
99(1)
5.2.2 Nanoparticles for Enzyme Immobilization
100(1)
5.2.2.1 General Consideration
100(1)
5.2.2.2 Application of Nanoparticles as Biosensor Supports
101(1)
5.2.3 Polymer Membranes
102(2)
5.3 Application of Enzyme-Based Biosensors
104(5)
5.3.1 Environmental Monitoring
104(1)
5.3.1.1 Phenolic Derivatives
104(1)
5.3.1.2 Pesticides
105(2)
5.3.2 Medical Diagnostics
107(2)
5.4 Conclusions
109(68)
Acknowledgments
109(1)
References
109(68)
6 Energy Harvesting for Biosensors Using Biofriendly Materials
117(10)
Radheshyam Rai
6.1 Introduction
117(1)
6.1.1 What is a Sensor?
117(1)
6.1.2 Why are We Moving Towards Biofriendly Materials?
118(1)
6.1.3 Why are We Moving Towards Energy Harvesting?
118(7)
6.2 Energy Production and Consumption
118(1)
6.3 Classification of Energy-Harvesting Devices
119(5)
6.4 Conclusions
124(3)
References
125(11)
7 Carbon Nanotubes: In Vitro and In Vivo Sensing and Imaging
127(34)
William Cheung
Huixin He
7.1 Introduction
127(1)
7.2 Carbon Nanotubes: Structure, Physical and Chemical Properties, and Applications
128(4)
7.3 Near-IR Absorption of Carbon Nanotubes
132(2)
7.4 Near-IR Photoluminescence of Single-Walled Carbon Nanotubes
134(11)
7.4.1 Study Internalization Mechanism and In Vitro, In Vivo, and Long-Term Fate of Carbon Nanotubes
136(2)
7.4.2 In Vitro and In Vivo Molecular Detection and Imaging
138(1)
7.4.2.1 Molecular Detection and Imaging Based on the Intrinsic Near-IR Fluorescence: Immunoassay
138(2)
7.4.2.2 Near-IR Photoluminescence Transduction Based on Band Gap Modulation of Single-Walled Carbon Nanotubes
140(4)
7.4.2.3 Other Sensing and Imaging Mechanisms
144(1)
7.5 Raman Scattering of Carbon Nanotubes
145(10)
7.5.1 Molecule Sensing and Imaging Based on Carbon Nanotube Raman Scattering
147(2)
7.5.2 Study of Internalization, In Vitro Cellular and In Vivo Tissue Biodistribution, and Long-Term Fate
149(6)
7.6 Conclusions and Outlook
155(6)
Acknowledgments
156(1)
References
156(5)
8 Lipid Nanoparticle-Mediated Detection of Proteins
161(16)
Erin K. Nyren-Erickson
Ryne C. Hendrickson
Sanku Mallik
8.1 Introduction to Liposomes
161(1)
8.2 Saturated Liposomes
162(7)
8.2.1 Detection of Antigens
162(5)
8.2.2 Detection of Viruses
167(2)
8.2.3 Detection of Enzymes
169(1)
8.3 Polymerized Liposomes
169(5)
8.3.1 Detection of Viruses
170(1)
8.3.2 Detection of Antigens
171(2)
8.3.3 Detection of Proteins
173(1)
8.4 Conclusions
174(3)
References
174(3)
9 Nanomaterials for Optical Imaging
177(22)
Anil V. Wagh
Ruchi Malik
Benedict Law
9.1 Introduction
177(1)
9.2 Doped Nanoparticles
178(14)
9.2.1 Doped Nanoparticles for In Vivo Imaging
178(2)
9.2.2 Quantum Dots
180(1)
9.2.3 Application of Quantum Dots for In Vivo Imaging
181(1)
9.2.4 Gold Nanoparticles
181(4)
9.2.4.1 Application of Gold Nanoparticles in Fluorescence Imaging
185(1)
9.2.4.2 Application of Gold Nanoparticles in Photoacoustic Imaging
186(2)
9.2.5 Lipid-Based Nanoparticles
188(1)
9.2.5.1 Liposomes as Imaging Carriers
188(2)
9.2.5.2 Biomolecules
190(2)
9.3 Conclusions and Outlook
192(7)
Acknowledgments
192(1)
References
192(7)
10 Semiconductor Quantum Dots for Electrochemical Biosensors
199(22)
Chunyan Wang
Bernard Knudsen
Xueji Zhang
10.1 Introduction
199(1)
10.2 Attachment of Biomolecules to Quantum Dots
200(1)
10.3 Quantum Dot-Based Redox Proteins Biosensor
200(13)
10.3.1 Glucose Oxidase-Quantum Dot-Based Glucose Biosensor
200(4)
10.3.2 Hemoglobin-Quantum Dot-Based H2O2 Biosensor
204(4)
10.3.3 Myoglobin-Quantum Dot-Based H2O2 Biosensor
208(3)
10.3.4 Laccase-Quantum Dot-Based Ascorbic Acid Biosensor
211(1)
10.3.5 Acetylcholinesterase-Quantum Dot-Based Inhibitor Biosensor
211(2)
10.4 Quantum Dot-Based Electrochemical Biosensors of Proteins and DNA
213(4)
10.5 Conclusions
217(4)
References
218(3)
11 Functionalized > Graphene for Biosensing Applications
221(16)
Minghui Yang
Chunyan Wang
Qin Wei
Bin Du
He Li
Zhiyong Qian
11.1 Introduction
221(1)
11.2 Preparation of Grapheme
221(3)
11.3 Functionalized Graphene with Metal Nanoparticles
224(1)
11.4 Glucose Biosensors Based on Graphene
225(3)
11.5 Immunosensors Based on Graphene
228(1)
11.6 Other Electrochemical Biosensors Based on Graphene
229(4)
11.7 Conclusions
233(4)
References
234(3)
12 Current Frontiers in Electrochemical Biosensors Using Chitosan Nanocomposites
237(10)
Shivani B. Mishra
Ajay K. Mishra
Ashutosh Tiwari
12.1 Introduction
237(1)
12.2 Chitosan
238(2)
12.3 Chitosan Nanocomposite-Based Electrochemical Biosensors
240(5)
12.3.1 Chitosan Nanocomposite-Based Amperometric Biosensors
240(2)
12.3.2 Chitosan Nanocomposite-Based Potentiometric Biosensors
242(2)
12.3.3 Chitosan Nanocomposite-Based Conductimetric Biosensors
244(1)
12.4 Conclusions and Future Aspects
245(2)
References
245(2)
13 Nanomaterials as Promising DNA Biosensors
247(8)
Premiata Kumari
13.1 Introduction
247(1)
13.2 Nanomaterials as Signal Amplifiers for Hybridization
248(4)
13.2.1 Nanoparticles
248(1)
13.2.1.1 Gold Nanoparticles
249(1)
13.2.1.2 Silver Nanoparticles
249(1)
13.2.1.3 Cadmium Sulfide Nanoparticles
250(1)
13.2.2 Quantum Dots
250(1)
13.2.3 Carbon Nanotube-Based Electrochemical DNA Sensors
251(1)
13.3 Conclusions
252(3)
References
253(2)
14 Nanocomposites and their Biosensor Applications
255(14)
Ajay K. Mishra
Shivani B. Mishra
Ashutosh Tiwari
14.1 Introduction
255(1)
14.2 Nanocomposites
256(3)
14.2.1 Ceramic Matrix Nanocomposites
257(1)
14.2.2 Metal Matrix Nanocomposites
258(1)
14.2.3 Polymer Matrix Nanocomposites
258(1)
14.3 Biosensors
259(2)
14.4 Types of Biosensors
261(3)
14.4.1 Electrochemical
262(1)
14.4.1.1 Potentiometric
262(1)
14.4.1.2 Conductimetric
262(1)
14.4.1.3 Amperometric
263(1)
14.4.2 Thermal Detection
263(1)
14.4.3 Ion-Sensitive
263(1)
14.4.4 Optical Detection
263(1)
14.4.5 Resonant
264(1)
14.5 Biosensors Applications
264(1)
14.6 Nanocomposites for Biosensor Applications
264(2)
14.7 Conclusions
266(3)
References
266(3)
Index 269
Dr. Songjun Li currently serves as president of the International Association of Advanced Materials and Editor-in-Chief of the international Journal Advanced Materials Letters. He is also Chair of the 1st International Congress on Advanced Materials, 13-16 May 2011, Jinan, China. Since his PhD in polymer chemistry, received from Chinese Academy of Sciences, his scientific interests focus on the chemistry of biosensors and molecularly imprinted polymers. Dr. Li was appointed by the Central China Normal University as an associate professor of chemistry in 2005. He was further appointed as an invited professor by the University of Jinan (China) in 2009 and a part-time professor by Jiangsu University in 2010. He is currently the specially appointed professor in the University of Allahabad (India).

Jagdish Singh is Professor and Chair of the Department of Pharmaceutical Sciences at NDSU College of Pharmacy, North Dakota, USA, and Fellow of the American Association of Pharmaceutical Scientists (AAPS). His research efforts focus on the mechanistic studies for developing and testing novel methods to deliver biotechnology-derived molecules. Jagdish Singh received twice the NDSU College of Pharmacy Researcher of the Year awards and was recognized with the Fred Waldron Research Award in 2002 in recognition of his outstanding contributions to research and creative activities at NDSU.

Dr. He Li, associated editor for Advanced Materials Letters, is an associate Professor of Chemistry in the School of Medical and Life Sciences at University of Jinan (UJN), China. He got his PhD degree in 2004 in Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences. Subsequently, he was appointed by UJN as an associate professor with research interests in biosensor and nanomedicine. He worked as the dean of Pharmaceutical Engineering Department of UJN since 2007.

Ipsita A. Banerjee is an Associate Professor of Chemistry at Fordham University, New York, USA. She did her Ph.D in Chemistry from the University of Connecticut, USA and Postdoctoral research from the University of Notre Dame, South Bend, Indiana and from Hunter College, City University of New York in Bionanotechnology. Her research efforts are geared toward the study of molecular self-assembly and formation of supramolecular nanostructures for the development of biomaterials for tissue-engineering, and biosensors particularly for examining cellular interactions in vitro. Efforts are also on going for the green-synthesis of nanoparticles for optoelectronics applications.