Atnaujinkite slapukų nuostatas

El. knyga: Biosensors and Nanotechnology: Applications in Health Care Diagnostics

Edited by (Technical University of Berlin, Germany)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 16-Nov-2017
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119065173
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 16-Nov-2017
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119065173
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Provides a broad range of information from basic principles to advanced applications of biosensors and nanomaterials in health care diagnostics

This book utilizes a multidisciplinary approach to provide a wide range of information on biosensors and the impact of nanotechnology on the development of biosensors for health care. It offers a solid background on biosensors, recognition receptors, biomarkers, and disease diagnostics. An overview of biosensor-based health care applications is addressed. Nanomaterial applications in biosensors and diagnostics are included, covering the application of nanoparticles, magnetic nanomaterials, quantum dots, carbon nanotubes, graphene, and molecularly imprinted nanostructures. The topic of organ-specific health care systems utilizing biosensors is also incorporated to provide deep insight into the very recent advances in disease diagnostics.

Biosensors and Nanotechnology: Applications in Health Care Diagnostics is comprised of 15 chapters that are presented in four sections and written by 33 researchers who are actively working in Germany, the United Kingdom, Italy, Turkey, Denmark, Finland, Romania, Malaysia and Brazil. It covers biomarkers in healthcare; microfluidics in medical diagnostics; SPR-based biosensor techniques; piezoelectric-based biosensor technologies; MEMS-based cell counting methods; lab-on-chip platforms; optical applications for cancer cases; and more. 

  • Discusses the latest technology and advances in the field of biosensors and their applications for healthcare diagnostics
  • Particular focus on biosensors for cancer
  • Summarizes research of the last 30 years, relating it to state-of-the-art technologies

Biosensors and Nanotechnology: Applications in Health Care Diagnostics is an excellent book for researchers, scientists, regulators, consultants, and engineers in the field, as well as for graduate students studying the subject.

List of Contributors
xi
Preface xv
Acknowledgments xvii
Section 1 Introduction to Biosensors, Recognition Elements, Biomarkers, and Nanomaterlals
1(58)
1 General Introduction to Biosensors and Recognition Receptors
3(14)
Frank Davis
Zeynep Altin tas
1.1 Introduction to Biosensors
3(1)
1.2 Enzyme-Based Biosensors
4(1)
1.3 DNA- and RNA-Based Biosensors
5(2)
1.4 Antibody-Based Biosensors
7(1)
1.5 Aptasensors
8(2)
1.6 Peptide-Based Biosensors
10(1)
1.7 MIP-Based Biosensors
11(1)
1.8 Conclusions
12(5)
Acknowledgment
13(1)
References
13(4)
2 Biomarkers in Health Care
17(18)
Adama Marie Sesay
Pirkko Tervo
Elisa Tikkanen
2.1 Introduction
17(1)
2.2 Biomarkers
18(2)
2.2.1 Advantage and Utilization of Biomarkers
18(1)
2.2.2 Ideal Characteristics of Biomarkers
19(1)
2.3 Biological Samples and Biomarkers
20(2)
2.4 Personalized Health and Point-of-Care Technology
22(2)
2.5 Use of Biomarkers in Biosensing Technology
24(2)
2.6 Biomarkers in Disease Diagnosis
26(3)
2.7 Conclusions
29(6)
References
30(5)
3 The Use of Nanomaterials and Microfluidics in Medical Diagnostics
35(24)
Jon Ashley
Yi Sun
3.1 Introduction
35(1)
3.2 Nanomaterials in Medical Diagnostics (Bottom-Up Approach)
36(9)
3.2.1 Carbon Nanomaterials
37(2)
3.2.2 Metallic Nanoparticles
39(1)
3.2.2.1 Quantum Dots
39(2)
3.2.2.2 Magnetic Nanoparticles (Fe2O3, FeO, and Fe3O4)
41(1)
3.2.2.3 Gold Nanoparticles
41(1)
3.2.2.4 Silver Nanoparticles
42(1)
3.2.2.5 Nanoshells
42(1)
3.2.2.6 Nanocages
43(1)
3.2.2.7 Nanowires
43(1)
3.2.3 Polymer-Based Nanoparticles
44(1)
3.3 Application of Microfluidic Devices in Clinical Diagnostics (Top-Down Approach)
45(7)
3.3.1 Unique Features of Microfluidic Devices
45(1)
3.3.2 Applications of Microfluidic Devices in Medical Diagnostics
46(1)
3.3.2.1 Types of Microfluidic POC Devices
47(1)
3.3.2.2 Benchtop Microfluidic Instruments
47(2)
3.3.2.3 Small, Lightweight Microfluidic Devices
49(1)
3.3.2.4 Simple Un-instrumented Microfluidic Systems
50(2)
3.4 Integration of Microfluidics with Nanomaterials
52(1)
3.5 Future Perspectives of Nanomaterial and Microfluidic-Based Diagnostics
53(6)
References
54(5)
Section 2 Biosensor Platforms for Disease Detection and Diagnostics
59(124)
4 SPR-Based Biosensor Technologies in Disease Detection and Diagnostics
61(16)
Zeynep Altintas
Wellington M. Fakanya
4.1 Introduction
61(2)
4.2 Basic Theoretical Principles
63(3)
4.3 SPR Applications in Disease Detection and Diagnostics
66(6)
4.3.1 SPR Biosensors in Cancer Detection
66(2)
4.3.2 SPR Sensors in Cardiac Disease Detection
68(3)
4.3.3 SPR Sensors in Infectious Disease Detection
71(1)
4.4 Conclusions
72(5)
Acknowledgment
74(1)
References
74(3)
5 Piezoelectric-Based Biosensor Technologies in Disease Detection and Diagnostics
77(18)
Zeynep Altintas
NoorAzlina Masdor
5.1 Introduction
77(1)
5.2 QCM Biosensors
78(2)
5.3 Disease Diagnosis Using QCM Biosensors
80(10)
5.3.1 Cancer Detection Using QCM Biosensors
82(3)
5.3.2 Cardiovascular Disease Detection Using Biosensors
85(3)
5.3.3 Pathogenic Disease Detection Using QCM Biosensors
88(2)
5.4 Conclusions
90(5)
Acknowledgment
91(1)
References
91(4)
6 Electrochemical-Based Biosensor Technologies in Disease Detection and Diagnostics
95(30)
Andrea Ravalli
Giovanna Marrazza
6.1 Introduction
95(1)
6.2 Electrochemical Biosensors: Definitions, Principles, and Classifications
96(6)
6.3 Biomarkers in Clinical Applications
102(16)
6.3.1 Electrochemical Biosensors for Tumor Markers
102(8)
6.3.2 Electrochemical Biosensors for Cardiac Markers
110(5)
6.3.3 Electrochemical Biosensors for Autoimmune Disease
115(1)
6.3.4 Electrochemical Biosensors for Autoimmune Infectious Disease
116(2)
6.4 Conclusions
118(7)
References
118(7)
7 MEMS-Based Cell Counting Methods
125(30)
Mustafa Kangul
Eren Aydm
Furkan Gdkge
Ozge Zorlu
Ebru Ozgur
Haluk Kulah
7.1 Introduction
125(1)
7.2 MEMS-Based Cell Counting Methods
126(5)
7.2.1 Optical Cell Counting Methods
126(1)
7.2.1.1 Quantification of the Cells by Detecting Luminescence
127(3)
7.2.1.2 Quantification of the Cells via High-Resolution Imaging Techniques
130(1)
7.3 Electrical and Electrochemical Cell Counting Methods
131(5)
7.3.1 Impedimetric Cell Quantification
133(2)
7.3.2 Voltammetric and Amperometric Cell Quantification
135(1)
7.4 Gravimetric Cell Counting Methods
136(13)
7.4.1 Deflection-Based Cell Quantification
136(2)
7.4.2 Resonant-Based Cell Quantification
138(1)
7.4.2.1 Theory of the Resonant-Based Sensors
138(2)
7.4.2.2 Actuation and Sensing Methods of Resonators in MEMS Applications
140(5)
7.4.2.3 Resonator Structure Types Used for Cell Detection Applications
145(4)
7.5 Conclusion and Comments
149(6)
References
151(4)
8 Lab-on-a-Chip Platforms for Disease Detection and Diagnosis
155(28)
Ziya Isiksacan
Mustafa Tahsin Guler
Ali Kalantarifard
Mohammad Asghari
Caglar Elbuken
8.1 Introduction
155(1)
8.2 Continuous Flow Platforms
156(5)
8.3 Paper-Based LOC Platforms
161(5)
8.4 Droplet-Based LOC Platforms
166(3)
8.5 Digital Microfluidic-Based LOC Platforms
169(3)
8.6 CD-Based LOC Platforms
172(2)
8.7 Wearable LOC Platforms
174(2)
8.8 Conclusion and Outlook
176(7)
References
177(6)
Section 3 Nanomaterial's Applications in Biosensors and Medical Diagnosis
183(144)
9 Applications of Quantum Dots in Biosensors and Diagnostics
185(16)
Zeynep Altintas
Frank Davis
Frieder W. Scheller
9.1 Introduction
185(1)
9.2 Quantum Dots: Optical Properties, Synthesis, and Surface Chemistry
186(1)
9.3 Biosensor Applications of QDs
187(4)
9.4 Other Biological Applications of QDs
191(3)
9.5 Water Solubility and Cytotoxicity
194(2)
9.6 Conclusion
196(5)
Acknowledgment
197(1)
References
197(4)
10 Applications of Molecularly Imprinted Nanostructures in Biosensors and Medical Diagnosis
201(18)
Deniz Aktas-Uygun
Murat Uygun
Zeynep Altintas
Sinan Akgol
10.1 Introduction
201(1)
10.2 Molecular Imprinted Polymers
202(2)
10.3 Imprinting Approaches
204(1)
10.4 Molecularly Imprinted Nanostructures
205(2)
10.5 MIP Biosensors in Medical Diagnosis
207(3)
10.6 Diagnostic Applications of MIP Nanostructures
210(2)
10.7 Conclusions
212(7)
References
213(6)
11 Smart Nanomaterials: Applications in Biosensors and Diagnostics
219(58)
Frank Davis
Flavio M. Shimizu
Zeynep Altintas
11.1 Introduction
219(2)
11.2 Metal Nanoparticles
221(5)
11.3 Magnetic Nanoparticles
226(5)
11.4 Carbon Nanotubes
231(4)
11.5 Graphene
235(7)
11.6 Nanostructured Metal Oxides
242(5)
11.7 Nanostructured Hydrogels
247(7)
11.8 Nanostructured Conducting Polymers
254(6)
11.9 Conclusions and Future Trends
260(17)
Acknowledgment
262(1)
References
263(14)
12 Applications of Magnetic Nanomaterials in Biosensors and Diagnostics
277(20)
Zeynep Altintas
12.1 Introduction
277(2)
12.2 MNP-Based Biosensors for Disease Detection
279(5)
12.3 MNPs in Cancer Diagnosis and Therapy
284(5)
12.4 Cellular Applications of MNPs in Biosensing, Imaging, and Therapy
289(1)
12.5 Conclusions
290(7)
Acknowledgment
291(1)
References
291(6)
13 Graphene Applications in Biosensors and Diagnostics
297(30)
Adina Arvinte
Adama Marie Sesay
13.1 Introduction
297(1)
13.2 Graphene and Biosensors
298(5)
13.2.1 Structure
298(1)
13.2.2 Preparation
299(2)
13.2.3 Properties
301(1)
13.2.4 Commercialization in the Field of Graphene Sensors
302(1)
13.2.5 Latest Developments in Graphene-based Diagnosis
303(1)
13.3 Medical Applications of Graphene
303(19)
13.3.1 Electrochemical Graphene Biosensors for Medical Diagnostics
304(1)
13.3.1.1 Glucose Detection
304(3)
13.3.1.2 Cysteine Detection
307(2)
13.3.1.3 Cholesterol Detection
309(1)
13.3.1.4 Hydrogen Peroxide (H202)
310(2)
13.3.1.5 Glycated Hemoglobin
312(1)
13.3.1.6 Neurotransmitters
312(3)
13.3.1.7 Amyloid-Beta Peptide
315(1)
13.3.2 Electrochemical Graphene Aptasensors
316(1)
13.3.2.1 Nucleic Acids
316(2)
13.3.2.2 Cancer Cell
318(1)
13.3.3 Optical Graphene Sensors for Medical Diagnostics
319(3)
13.4 Conclusions
322(5)
Acknowledgment
322(1)
References
322(5)
Section 4 Organ-Specific Health Care Applications for Disease Cases Using Biosensors
327(40)
14 Optical Biosensors and Applications to Drug Discovery for Cancer Cases
329(20)
Zeynep Altintas
14.1 Introduction
329(3)
14.2 Biosensor Technology and Coupling Chemistries
332(3)
14.3 Optical Biosensors for Drug Discovery
335(6)
14.4 Computational Simulations and New Approaches for Drug-Receptor Interactions
341(2)
14.5 Conclusions
343(6)
Acknowledgment
344(1)
References
344(5)
15 Biosensors for Detection of Anticancer Drug-DNA Interactions
349(18)
Arzum Erdem
Ece Eksin
Ece Kesici
15.1 Introduction
349(2)
15.2 Voltammetric Techniques
351(5)
15.3 Optical Techniques
356(2)
15.4 Electrochemical Impedance Spectroscopy Technique
358(2)
15.5 QCM Technique
360(1)
15.6 Conclusions
361(6)
Acknowledgments
361(1)
References
361(6)
Index 367
ZEYNEP ALTINTAS, PhD, is the head of the Biosensors and Receptor Development Group at the Technical University of Berlin, Germany. She serves as an expert reviewer for EU and Wisconsin Groundwater Coordinating Council (USA) funded projects, in addition to acting as a reviewer for several important journals in her areas of expertise. She is also a member of the Royal Society of Chemistry (RSC).