Atnaujinkite slapukų nuostatas

El. knyga: Biosignal and Medical Image Processing

(Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA),
  • Formatas: 630 pages
  • Išleidimo metai: 30-Sep-2021
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9781466567375
  • Formatas: 630 pages
  • Išleidimo metai: 30-Sep-2021
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9781466567375

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Written specifically for biomedical engineers, Biosignal and Medical Image Processing, Third Edition provides a complete set of signal and image processing tools, including diagnostic decision-making tools, and classification methods. Thoroughly revised and updated, it supplies important new material on nonlinear methods for describing and classifying signals, including entropy-based methods and scaling methods. A full set of PowerPoint slides covering the material in each chapter and problem solutions is available to instructors for download.

See Whats New in the Third Edition:





Two new chapters on nonlinear methods for describing and classifying signals. Additional examples with biological data such as EEG, ECG, respiration and heart rate variability Nearly double the number of end-of-chapter problems MATLAB® incorporated throughout the text Data "cleaning" methods commonly used in such areas as heart rate variability studies







The text provides a general understanding of image processing sufficient to allow intelligent application of the concepts, including a description of the underlying mathematical principals when needed. Throughout this textbook, signal and image processing concepts are implemented using the MATLAB® software package and several of its toolboxes.

The challenge of covering a broad range of topics at a useful, working depth is motivated by current trends in biomedical engineering education, particularly at the graduate level where a comprehensive education must be attained with a minimum number of courses. This has led to the development of "core" courses to be taken by all students. This text was written for just such a core course. It is also suitable for an upper-level undergraduate course and would also be of value for students in other disciplines that would benefit from a working knowledge of signal and image processing.

Recenzijos

"An excellent review of the actual trendiest techniques in signal processing with a very clear (and simplified) description of their capabilities in signal and image analysis. Matlab examples are an excellent addition to provide students with capabilities to understand better how the techniques work" Enrique Nava Baro, PhD, University of MĮlaga, Spain

"The book is a welcome addition to the teaching literature for biomedical engineering, building on the previous editions friendly approach to introducing the material. This makes it particularly suitable for biomedical engineering, a field in which students come from a variety of backgrounds, and where familiarity of the fundamentals of electrical engineering cannot be assumed." David A. Clifton, University of Oxford, UK

Introduction. Basic Concepts. Spectral Analysis: Classical Methods.
Digital Filters. Spectral Analysis: Modern Techniques. TimeFrequency
Analysis. Wavelet Analysis. Advanced Signal Processing Techniques: Optimal
and Adaptive Filters. Multivariate Analyses: Principal Component Analysis and
Independent Component Analysis. Fundamentals of Imaging Processing: MATLAB
Image Processing Toolbox. Spectral Analysis: The Fourier Transform. Image
Segmentation. Image Reconstruction. Classification I: Linear Discriminant
Analysis and Support Vector Machines. Adaptive Neural Nets.
John L. Semmlow (Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA) (Author) , Benjamin Griffel (Author)