Introduction |
|
ix | |
|
Chapter 1 Elements of the Language |
|
|
1 | (22) |
|
|
1 | (2) |
|
|
1 | (1) |
|
|
1 | (1) |
|
1.1.3 List of useful packages |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
2 | (1) |
|
1.2 Data representation in R |
|
|
3 | (6) |
|
1.2.1 Management of numerical variables |
|
|
3 | (1) |
|
1.2.2 Operations with a numerical variable |
|
|
4 | (2) |
|
1.2.3 Management of categorical variables |
|
|
6 | (1) |
|
1.2.4 Manipulation of categorical variables |
|
|
7 | (2) |
|
1.3 Selection of observations |
|
|
9 | (1) |
|
1.3.1 Index-based selection |
|
|
9 | (1) |
|
1.3.2 Criterion-based selection |
|
|
9 | (1) |
|
1.4 Representation and processing of missing values |
|
|
10 | (1) |
|
1.5 Importing and storing data |
|
|
11 | (3) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.5.3 Storing the data in an external file |
|
|
13 | (1) |
|
1.6 Multidimensional data management |
|
|
14 | (4) |
|
1.6.1 Construction of a structured data table |
|
|
14 | (1) |
|
|
15 | (3) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
18 | (5) |
|
Chapter 2 Descriptive Statistics and Estimation |
|
|
23 | (18) |
|
2.1 Summarizing a numerical variable |
|
|
23 | (2) |
|
2.1.1 Central tendency and shape of the distribution |
|
|
23 | (1) |
|
2.1.2 Distribution indicators |
|
|
24 | (1) |
|
2.2 Summarizing a categorical variable |
|
|
25 | (2) |
|
2.3 Graphically representing the distribution of a variable |
|
|
27 | (6) |
|
2.3.1 The case of numerical variables |
|
|
28 | (3) |
|
2.3.2 The case of categorical variables |
|
|
31 | (2) |
|
2.4 Interval estimation for a mean or a proportion |
|
|
33 | (2) |
|
2.4.1 Confidence interval for a mean |
|
|
33 | (1) |
|
2.4.2 Confidence interval for a proportion |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (5) |
|
Chapter 3 Measures and Tests of Association Between Two Variables |
|
|
41 | (24) |
|
3.1 Bivariate descriptive statistics |
|
|
41 | (5) |
|
3.1.1 Describing a numeric variable according to the modalities of a qualitative variable |
|
|
41 | (3) |
|
3.1.2 Describing two qualitative variables |
|
|
44 | (2) |
|
3.2 Comparisons of two group means |
|
|
46 | (6) |
|
3.2.1 Independent samples |
|
|
46 | (3) |
|
3.2.2 Non-independent samples |
|
|
49 | (3) |
|
3.3 Comparisons of proportions |
|
|
52 | (3) |
|
3.3.1 Case of two proportions |
|
|
52 | (1) |
|
|
53 | (1) |
|
3.3.3 The case of non-independent samples |
|
|
54 | (1) |
|
3.4 Risk and odds ratio measures |
|
|
55 | (1) |
|
3.5 Non-parametric approaches and exact tests |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
58 | (7) |
|
Chapter 4 Analysis of Variance and Experimental Design |
|
|
65 | (24) |
|
4.1 Data representation and descriptive statistics |
|
|
65 | (3) |
|
4.1.1 Data representation format |
|
|
65 | (1) |
|
4.1.2 Descriptive statistics and data structuring |
|
|
66 | (2) |
|
|
68 | (8) |
|
4.2.1 The one-way ANOVA model |
|
|
68 | (3) |
|
4.2.2 Comparisons using pairs of treatments |
|
|
71 | (1) |
|
|
72 | (4) |
|
4.3 Non-parametric one-way ANOVA |
|
|
76 | (1) |
|
|
76 | (4) |
|
4.4.1 Construction of an ANOVA table |
|
|
77 | (2) |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
80 | (9) |
|
Chapter 5 Correlation and Linear Regression |
|
|
89 | (22) |
|
5.1 Descriptive statistics |
|
|
89 | (4) |
|
5.1.1 Scatterplot and Loess curve |
|
|
91 | (1) |
|
5.1.2 Parametric and non-parametric association measures |
|
|
91 | (1) |
|
5.1.3 Interval estimation and inference test |
|
|
92 | (1) |
|
5.2 Simple linear regression |
|
|
93 | (8) |
|
|
93 | (3) |
|
5.2.2 Interval estimation and variance analysis table |
|
|
96 | (1) |
|
5.2.3 Regression model predictions |
|
|
97 | (1) |
|
5.2.4 Diagnostic and residual analysis of the model |
|
|
98 | (1) |
|
5.2.5 Connection with ANOVA |
|
|
99 | (2) |
|
5.3 Multiple linear regression |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
102 | (9) |
|
Chapter 6 Measures of Association in Epidemiology and Logistic Regression |
|
|
111 | (26) |
|
6.1 Contingency tables and measures of association |
|
|
111 | (4) |
|
|
111 | (1) |
|
6.1.2 Measures and association tests |
|
|
112 | (1) |
|
6.1.3 Odds ratio and stratification |
|
|
112 | (3) |
|
|
115 | (3) |
|
6.2.1 Sensibility and specificity of a diagnostic test |
|
|
115 | (1) |
|
6.2.2 Positive and negative predictive values |
|
|
116 | (1) |
|
6.2.3 Synthesis table of the diagnostic properties of a test |
|
|
117 | (1) |
|
|
118 | (6) |
|
6.3.1 Estimation of the model's parameters |
|
|
118 | (3) |
|
6.3.2 Predictions with confidence intervals |
|
|
121 | (2) |
|
6.3.3 The case of grouped data |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
126 | (11) |
|
Chapter 7 Survival Data Analysis |
|
|
137 | (18) |
|
7.1 Data representation and descriptive statistics |
|
|
138 | (1) |
|
7.1.1 Data representation format |
|
|
138 | (1) |
|
7.2 Survival function and Kaplan-Meier curve |
|
|
138 | (6) |
|
|
138 | (2) |
|
|
140 | (2) |
|
7.2.3 Cumulative hazard function |
|
|
142 | (1) |
|
7.2.4 Survival function equality test |
|
|
143 | (1) |
|
|
144 | (2) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (8) |
|
|
155 | (32) |
|
Appendix 1 Introduction to RStudio |
|
|
157 | (4) |
|
Appendix 2 Graphs with the Lattice Package |
|
|
161 | (12) |
|
Appendix 3 The Hmisc and rms Packages |
|
|
173 | (14) |
Bibliography |
|
187 | (4) |
Index |
|
191 | |