Atnaujinkite slapukų nuostatas

El. knyga: Biosurfactants for a Sustainable Future: Production and Applications in the Environment and Biomedicine

Edited by (University of Hyderabad, India), Edited by
  • Formatas: PDF+DRM
  • Išleidimo metai: 16-Apr-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119671039
  • Formatas: PDF+DRM
  • Išleidimo metai: 16-Apr-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119671039

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"This book focuses on the recent developments in biosurfactants, discussing their properties, characterization, production, and applications in environmental remediation, biomedicine and biotechnology. It emphasizes the various techniques that are utilized for the detection and isolation of biosurfactants from microorganisms, and discusses metagenomics strategies to facilitate the exploration of the novel biosurfactants (mechanistic understanding and future prospects) for sustainable environmental remediation and control of antibiotic resistant genes and other pathogens. Topics covered include: Production: * Biosurfactant production using bioreactors and different carbon sources (food processing and agro- industry by-products) * Identification of novel biosurfactants- metagenomic approaches Environmental Applications: * Biosurfactant-assisted bioremediation of crude oil/petroleum hydrocarbon contaminated soil * Biosurfactants for microbe enhanced oil recovery [ MERO] * Biosurfactants in soil bioremediation and enhanced micronutrient availability * Biosurfactants enhanced microbial degradation of polyaromatic hydrocarbons * Surfactant-enhanced bioremediation of DDT and persistent organic micropollutants * Biosurfactants for heavy metal remediation * Biosurfactants for the synthesis of biogenic nanoparticles for environmental application Biomedical Applications: * Biosurfactant?]inspired control of methicillin?]resistant Staphylococcus aureus (MRSA) * Antiviral, antimicrobial and antibiofilm potential of biosurfactants against multi-drug-resistant pathogens * Biosurfactants for cosmetics and dermatological repair * Biosurfactant mediated biocontrol of pathogenic microbes of crop plants"--

Explore the state-of-the-art in biosurfactant technology and its applications in environmental remediation, biomedicine, and biotechnology 

Biosurfactants for a Sustainable Future explores recent developments in biosurfactants and their use in a variety of cutting-edge applications. The book opens a window on the rapid development of microbiology by explaining how microbes and their products are used in advanced medical technology and in the sustainable remediation of emerging environmental contaminants.  

The book emphasizes the different techniques that are used for the production of biosurfactants from microorganisms and their characterization.  Various aspects of biosurfactants, including structural characteristics, developments, production, bio-economics and their sustainable use in the environment and biomedicine, are addressed, and the book also presents metagenomic strategies to facilitate the discovery of novel biosurfactants producing microorganisms. Readers will benefit from the inclusion of: 

  • A thorough introduction to the state-of-the-art in biosurfactant technology, techniques, and applications 
  • An exploration of biosurfactant enhanced remediation of sediments contaminated with organics and inorganics 
  • A discussion of perspectives for biomedical and biotechnological applications of biosurfactants
  • A review of the antiviral, antimicrobial, and antibiofilm potential of biosurfactants against multi-drug-resistant pathogens. 
  • An examination of biosurfactant-inspired control of methicillin-resistant staphylococcus aureus  

Perfect for academic researchers and scientists working in the petrochemical industry, pharmaceutical industry, and in the agroindustry, Biosurfactants for a Sustainable Future will also earn a place in the libraries of scientists working in environmental biotechnology, environmental science, and biomedical engineering. 

List of Contributors
xii
Preface xvii
1 Introduction To Biosurfactants
1(42)
Jose Vazquez Tato
Julio A. Seijas
M. Pilar Vazquez-Tato
Francisco Meijide
Santiago De Frutos
Aida Lover
Francisco Fraga
Victor H. Soto
1.1 Introduction and Historical Perspective
1(4)
1.2 Micelle Formation
5(9)
1.3 Average Aggregation Numbers
14(4)
1.4 Packing Properties of Amphiphiles
18(2)
1.5 Biosurfactants
20(5)
1.6 Sophorolipids
25(3)
1.7 Surfactin
28(3)
1.8 Final Comments
31(12)
Acknowledgement
32(1)
References
32(11)
2 Metagenomics Approach For Selection Of Blosurfactant Producing Bacteria From Oil Contaminated Soil: An Insight Into Its Technology
43(16)
Nazim F. Islam
Hemen Sarma
2.1 Introduction
43(1)
2.2 Metagenomics Application: A State-of-the-Art Technique
44(2)
2.3 Hydrocarbon-Degrading Bacteria and Genes
46(1)
2.4 Metagenomic Approaches in the Selection of Biosurfactant-Producing Microbes
47(1)
2.5 Metagenomics with Stable Isotope Probe (SIP) Techniques
48(2)
2.6 Screening Methods to Identify Features of Biosurfactants
50(2)
2.7 Functional Metagenomics: Challenge and Opportunities
52(1)
2.8 Conclusion
53(6)
Acknowledgements
54(1)
References
54(5)
3 Biosurfactant Production Using Bioreactors From Industrial Byproducts
59(20)
Arun Karnwal
3.1 Introduction
59(1)
3.2 Significance of the Production of Biosurfactants from Industrial Products
60(1)
3.3 Factors Affect Biosurfactant Production in Bioreactor
61(1)
3.4 Microorganisms
61(2)
3.5 Bacterial Growth Conditions
63(2)
3.6 Substrate for Biosurfactant Production
65(6)
3.7 Conclusions
71(8)
Acknowledgement
71(1)
References
72(7)
4 Biosurfactants For Heavy Metal Remediation And Bioeconomics
79(20)
Shalini Srivastava
Monoj Kumar Mondat
Shashi Bhushan Agrawal
4.1 Introduction
80(1)
4.2 Concept of Surfactant and Biosurfactant for Heavy Metal Remediation
81(1)
4.3 Mechanisms of Biosurfactant-Metal Interactions
82(1)
4.4 Substrates Used for Biosurfactant Production
82(3)
4.5 Classification of Biosurfactants
85(1)
4.6 Types of Biosurfactants
85(3)
4.7 Factors Influencing Biosurfactants Production
88(1)
4.8 Strategies for Commercial Biosurfactant Production
89(1)
4.9 Application of Biosurfactant for Heavy Metal Remediation
90(3)
4.10 Bioeconomics of Metal Remediation Using Biosurfactants
93(1)
4.11 Conclusion
94(5)
References
94(5)
5 Application Of Biosurfactants For Microbial Enhanced Oil Recovery (Meor)
99(20)
Jessica Correia
Ligia R. Rodrigues
Jose A. Teixeira
Eduardo J. Gudina
5.1 Energy Demand and Fossil Fuels
99(2)
5.2 Microbial Enhanced Oil Recovery (MEOR)
101(1)
5.3 Mechanisms of Surfactant Flooding
102(1)
5.4 Biosurfactants: An Alternative to Chemical Surfactants to Increase Oil Recovery
103(1)
5.5 Biosurfactant MEOR: Laboratory Studies
104(8)
5.6 Field Assays
112(1)
5.7 Current State of Knowledge, Technological Advances, and Future Perspectives
113(6)
Acknowledgements
114(1)
References
114(5)
6 Biosurfactant Enhanced Sustainable Remediation Of Petroleum Contaminated Soil
119(20)
Pooja Singh
Selvan Ravindran
Yogesh Patil
6.1 Introduction
119(2)
6.2 Microbial-Assisted Bioremediation of Petroleum Contaminated Soil
121(1)
6.3 Hydrocarbon Degradation and Biosurfactants
122(2)
6.4 Soil Washing Using Biosurfactants
124(2)
6.5 Combination Strategies for Efficient Bioremediation
126(3)
6.6 Biosurfactant Mediated Field Trials
129(1)
6.7 Limitations, Strategies, and Considerations of Biosurfactant-Mediated Petroleum Hydrocarbon Degradation
130(2)
6.8 Conclusion
132(7)
References
133(6)
7 Microbial Surfactants Are Next-Generation Biomolecules For Sustainable Remediation Of Polyaromatic Hydrocarbons
139(20)
Punniyakotti Parthipan
Liang Cheng
Aruliah Rajasekar
Subramania Angaiah
7.1 Introduction
139(5)
7.2 Biosurfactant-Enhanced Bioremediation of PAHs
144(7)
7.3 Microorganism's Adaptations to Enhance Bioavailability
151(1)
7.4 Influences of Micellization on Hydrocarbons Access
151(1)
7.5 Accession of PAHs in Soil Texture
152(1)
7.6 The Negative Impact of Surfactant on PAH Degradations
152(1)
7.7 Conclusion and Future Directions
153(6)
References
153(6)
8 Biosurfactants For Enhanced Bioavailability Of Micronutrients In Soil: A Sustainable Approach
159(24)
Siddhartha Narayan Borah
Suparna Sen
Kannan Pakshirajan
8.1 Introduction
159(2)
8.2 Micronutrient Deficiency in Soil
161(1)
8.3 Factors Affecting the Bioavailability of Micronutrients
161(2)
8.4 Effect of Micronutrient Deficiency on the Biota
163(3)
8.5 The Role of Surfactants in the Facilitation of Micronutrient Biosorption
166(1)
8.6 Surfactants
166(7)
8.7 Conclusion
173(10)
References
174(9)
9 Biosurfactants: Production And Role In Synthesis Of Nanoparticles For Environmental Applications
183(24)
Ashwini N. Rone
S.J. Geetha
Sanket J. Joshi
9.1 Nanoparticles
183(1)
9.2 Synthesis of Nanoparticles
184(3)
9.3 Biosurfactants
187(4)
9.4 Biosurfactant Mediated Nanoparticles Synthesis
191(5)
9.5 Challenges in Environmental Applications of Nanoparticles and Future Perspectives
196(11)
Acknowledgements
197(1)
References
197(10)
10 Green Surfactants: Production, Properties, And Application In Advanced Medical Technologies
207(38)
Ana Maria Marques
Lourdes Perez
Maribel Farfan
Aurora Pinazo
10.1 Environmental Pollution and World Health
207(1)
10.2 Amino Acid-Derived Surfactants
208(5)
10.3 Biosurfactants
213(6)
10.4 Antimicrobial Resistance
219(4)
10.5 Catanionic Vesicles
223(11)
10.6 Biosurfactant Functionalization: A Strategy to Develop Active Antimicrobial Compounds
234(1)
10.7 Conclusions
235(10)
References
235(10)
11 Antiviral, Antimicrobial, and Antibiofilm Properties Of Biosurfactants: Sustainable Use In Food And Pharmaceuticals
245(24)
Kenia Barrantes
Juan Jose Araya
Luz Chacon
Rolando Procupez-Schtirbu
Fernanda Lugo
Gabriel Ibarra
Victor H. Soto
11.1 Introduction
245(1)
11.2 Antimicrobial Properties
246(6)
11.3 Biofilms
252(3)
11.4 Antiviral Properties
255(1)
11.5 Therapeutic and Pharmaceutical Applications of Biosurfactants
256(2)
11.6 Biosurfactants in the Food Industry: Quality of the Food
258(2)
11.7 Conclusions
260(9)
Acknowledgements
261(1)
References
261(8)
12 Biosurfactant-Based Antibiofilm Nano Materials
269(24)
Sonam Gupta
12.1 Introduction
269(1)
12.2 Emerging Biofilm Infections
270(2)
12.3 Challenges and Recent Advancement in Antibiofilm Agent Development
272(1)
12.4 Impact of Extracellular Matrix and Their Virulence Attributes
273(1)
12.5 Role of Indwelling Devices in Emerging Drug Resistance
274(1)
12.6 Role of Physiological Factors (Growth Rate, Biofilm Age, Starvation)
274(1)
12.7 Impact of Efflux Pump in Antibiotic Resistance Development
275(1)
12.8 Nanotechnology-Based Approaches to Combat Biofilm
276(1)
12.9 Biosurfactants: A Promising Candidate to Synthesize Nanomedicines
277(1)
12.10 Synthesis of Nanomaterials
278(4)
12.11 Self-Nanoemulsifying Drug Delivery Systems (SNEDDs)
282(1)
12.12 Biosurfactant-Based Antibiofilm Nanomaterials
283(1)
12.13 Conclusions and Future Prospects
283(10)
Acknowledgement
285(1)
References
285(8)
13 Biosurfactants From Bacteria And Fungi: Perspectives On Advanced Biomedical Applications
293(24)
Rashmi Rekha Saikia
Suresh Deka
Hemen Sarma
13.1 Introduction
293(2)
13.2 Biomedical Applications of Biosurfactants: Recent Developments
295(12)
13.3 Conclusion
307(10)
Acknowledgements
307(1)
References
307(10)
14 Biosurfactant-Inspired Control Of Methicillin-Resistant Staphylococcus Aureus (Mrsa)
317(22)
Amy R. Nava
14.1 Staphylococcus aureus, MRSA, and Multidrug Resistance
317(1)
14.2 Biosurfactant Types Commonly Utilized Against S. aureus and Other Pathogens
318(1)
14.3 Properties of Efficient Biosurfactants Against MRSA and Bacterial Pathogens
319(1)
14.4 Uses for Biosurfactants
320(1)
14.5 Biosurfactants Illustrating Antiadhesive Properties against MRSA Biofilms
320(2)
14.6 Biosurfactants with Antibiofilm and Antimicrobial Properties
322(1)
14.7 Media, Microbial Source, and Culture Conditions for Antibiofilm and Antimicrobial Properties
323(3)
14.8 Novel Synergistic Antimicrobial and Antibiofilm Strategies Against MRSA and S. aureus
326(2)
14.9 Novel Potential Mechanisms of Antimicrobial and Antibiofilm Properties
328(2)
14.10 Conclusion
330(9)
References
332(7)
15 Exploiting The Significance Of Biosurfactant For The Treatment Of Multidrug-Resistant Pathogenic Infections
339(14)
Sonam Gupta
Vikas Pruthi
15.1 Introduction
339(1)
15.2 Microbial Pathogenesis and Biosurfactants
340(2)
15.3 Bio-Removal of Antibiotics Using Probiotics and Biosurfactants Bacteria
342(1)
15.4 Antiproliferative, Antioxidant, and Antibiofilm Potential of Biosurfactant
343(1)
15.5 Wound Healing Potential of Biosurfactants
344(1)
15.6 Conclusion and Future Prospects
345(8)
References
346(7)
16 Biosurfactants Against Drug-Resistant Human And Plant Pathogens: Recent Advances
353(20)
Chandana Matakar
Suresh Deka
16.1 Introduction
353(1)
16.2 Environmental Impact of Antibiotics
354(2)
16.3 Pathogenicity of Antibiotic-Resistant Microbes on Human and Plant Health
356(4)
16.4 Role of Biosurfactants in Combating Antibiotic Resistance: Challenges and Prospects
360(4)
16.5 Conclusion
364(9)
Acknowledgements
365(1)
References
365(8)
17 Surfactant- And Biosurfactant-Based Therapeutics: Structure, Properties, And Recent Developments In Drug Delivery And Therapeutic Applications
373(24)
Anand K. Kondapi
17.1 Introduction
374(1)
17.2 Determinants and Forms of Surfactants
374(3)
17.3 Structural Forms of Surfactants
377(4)
17.4 Drug Delivery Systems
381(3)
17.5 Different Types of Biosurfactants Used for Drug Delivery
384(7)
17.6 Conclusions
391(6)
References
392(5)
18 The Potential Use Of Biosurfactants In Cosmetics And Dermatological Products: Current Trends And Future Prospects
397(26)
Zarith Asyikin Abdul Aziz
Siti Hamidah Mohd Setapar
Asma Khatoon
Akil Ahmad
18.1 Introduction
397(2)
18.2 Properties of Biosurfactants
399(2)
18.3 Biosurfactant Classifications and Potential Use in Cosmetic Applications
401(5)
18.4 Dermatological Approach of Biosurfactants
406(3)
18.5 Cosmetic Formulation with Biosurfactant
409(3)
18.6 Safety Measurement Taken for Biosurfactant Applications in Dermatology and Cosmetics
412(3)
18.7 Conclusion and Future Perspective
415(8)
Acknowledgement
415(1)
References
415(8)
19 Cosmeceutical Applications Of Biosurfactants: Challenges And Prospects
423(20)
Karen Gercyane Otiveira Bezerra
Leonie Asfora Sarubbo
19.1 Introduction
423(1)
19.2 Cosmeceutical Properties of Biosurfactants
424(5)
19.3 Other Activities
429(3)
19.4 Application Prospects
432(1)
19.5 Biosurfactants in the Market
433(1)
19.6 Challenges and Conclusion
434(9)
References
436(7)
20 Biotechnologically Derived Bioactive Molecules For Skin And Hair-Care Application
443(22)
Suparna Sen
Siddhartha Narayan Borah
Suresh Deka
20.1 Introduction
443(2)
20.2 Surfactants in Cosmetic Formulation
445(1)
20.3 Biosurfactants in Cosmetic Formulations
445(12)
20.4 Conclusion
457(8)
References
457(8)
21 Biosurfactants As Biocontrol Agents Against Mycotoxigenic Fungi
465(26)
Ana I. Rodrigues
Eduardo J. Gudina
Jose A. Teixeira
Ugia R. Rodrigues
21.1 Mycotoxins
465(1)
21.2 Anatoxins
466(1)
21.3 Deoxynivalenol
467(1)
21.4 Fumonisins
468(1)
21.5 Ochratoxin A
468(2)
21.6 Patulin
470(1)
21.1 Zearalenone
470(1)
21.8 Prevention and Control of Mycotoxins
471(1)
21.9 Biosurfactants
472(1)
21.10 Glycolipids
473(1)
21.11 Lipopeptides
474(1)
21.12 Antifungal Activity of Glycolipid Biosurfactants
474(1)
21.13 Antifungal and Antimycotoxigenic Activity of Lipopeptide Biosurfactants
475(7)
21.14 Opportunities and Perspectives
482(9)
Acknowledgements
483(1)
References
483(8)
22 Biosurfactant-Mediated Biocontrol Of Pathogenic Microbes Of Crop Plants
491(19)
Madhurankhi Goswami
Suresh Deka
22.1 Introduction
491(1)
22.2 Biosurfactant: Properties and Types
492(10)
22.3 Biosurfactant in Agrochemical Formulations for Sustainable Agriculture
502(1)
22.4 Biosurfactants for a Greener and Safer Environment
503(1)
22.5 Conclusion
503(7)
References
504(6)
Index 510
Hemen Sarma is Assistant Professor at Nanda Nath Saikia College in Assam, India. His research focus is on plant- microbiome interactions, biosurfactants, persistent organic and inorganic pollutants, sustainable remediation, molecular breeding, CRISPR/cas9 gene editing and nanobiotechnology.

Majeti Narasimha Vara Prasad is Emeritus Professor in the School of Life Sciences at the University of Hyderabad in India. He has published over 216 papers in scholarly journals and edited 34 books. He received his doctorate in Botany from Lucknow University, India in 1979. Based on an independent study by Stanford University scientists in 2020, he figured in the top 2% of scientists from India, ranked number 1 in Environmental Sciences (116 in world).