Atnaujinkite slapukų nuostatas

El. knyga: Biothermodynamics, Part B

Edited by (Washington University School of Medicine, St. Louis, Mo, USA), Edited by (Washington University Medical Center, St. Louis, MO, USA), Edited by (University of Virginia Health Sciences Center, Charlottesville, USA)
  • Formatas: EPUB+DRM
  • Serija: Methods in Enzymology
  • Išleidimo metai: 11-Nov-2009
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080887814
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Methods in Enzymology
  • Išleidimo metai: 11-Nov-2009
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080887814
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The use of thermodynamics in biological research can be equated to an energy book-keeping system. While the structure and function of a molecule is important, it is equally important to know what drives the energy force. These methods look to answer: What are the sources of energy that drive the function? Which of the pathways are of biological significance? As the base of macromolecular structures continues to expand through powerful techniques of molecular biology, such as X-ray crystal data and spectroscopy methods, the importance of tested and reliable methods for answering these questions will continue to expand as well. This volume presents sophisticated methods for estimating the thermodynamic parameters of specific protein-protein, protein-DNA and small molecule interactions.

* Elucidates the relationships between structure and energetics and their applications to molecular design, aiding researchers in the design of medically important molecules * Provides a "must-have" methods volume that keeps MIE buyers and online subscribers up-to-date with the latest research * Offers step-by-step lab instructions, including necessary equipment, from a global research community



The use of thermodynamics in biological research can be equated to an energy book-keeping system. While the structure and function of a molecule is important, it is equally important to know what drives the energy force. These methods look to answer: What are the sources of energy that drive the function? Which of the pathways are of biological significance? As the base of macromolecular structures continues to expand through powerful techniques of molecular biology, such as X-ray crystal data and spectroscopy methods, the importance of tested and reliable methods for answering these questions will continue to expand as well. This volume presents sophisticated methods for estimating the thermodynamic parameters of specific protein-protein, protein-DNA and small molecule interactions.

* Elucidates the relationships between structure and energetics and their applications to molecular design, aiding researchers in the design of medically important molecules * Provides a "must-have" methods volume that keeps MIE buyers and online subscribers up-to-date with the latest research * Offers step-by-step lab instructions, including necessary equipment, from a global research community

Daugiau informacijos

This volume presents robust and modern thermodynamic methods for determining the "functional energetics" of macromolecular structures with their biological functions.
Contributors xiii
Preface xix
Volumes in Series xxi
Using NMR-Detected Backbone Amide 1H Exchange to Assess Macromolecular Crowding Effects on Globular-Protein Stability
1(18)
Andrew C. Miklos
Conggang Li
Gary J. Pielak
Introduction
2(1)
Globular Protein Stability
3(1)
Mechanism and Limits of Amide 1H Exchange
3(3)
Requirements for Candidate Systems
6(2)
Preliminary Experiments
8(6)
A Protocol for Amide 1H Exchange
14(1)
Summary and Future Directions
15(4)
Acknowledgments
16(1)
References
16(3)
Fluorescence Spectroscopy in Thermodynamic and Kinetic Analysis of pH-Dependent Membrane Protein Insertion
19(24)
Alexey S. Ladokhin
Introduction: Co-Translational Versus Post-Translational Membrane Protein Insertion
21(1)
Challenges of Thermodynamic Analysis of Membrane Protein Folding/Insertion
22(1)
FCS and Protein---Membrane Interactions
23(5)
Thermodynamic Schemes for Analysis of Membrane Partitioning
28(4)
Kinetic Analysis of Membrane Protein Insertion
32(6)
Perspectives: Annexin B12 as a Model for Thermodynamic and Kinetic Analysis of Membrane Protein Insertion, Folding and Misfolding
38(5)
Acknowledgments
40(1)
References
40(3)
Evaluating the Energy-Dependent ``Binding'' in the Early Stage of Protein Import into Chloroplasts
43(22)
Mitsuru Akita
Hitoshi Inoue
Introduction
44(1)
The In Vitro Chloroplastic Import Assay Using Recombinant Precursor Proteins
45(8)
Limited Proteolysis of Docked Precursor Proteins
53(6)
The Behavior of Transit Peptide During the Transition
59(3)
Conclusions
62(3)
Acknowledgments
62(1)
References
62(3)
Use of DNA Length Variation to Detect Periodicities in Positively Cooperative, Nonspecific Binding
65(18)
Manana Melikishvili
Lance M. Hellman
Michael G. Fried
Introduction
66(2)
Protein and DNA Preparations
68(1)
Stoichiometry Analyses
68(7)
Affinity and Cooperativity as Functions of DNA Length
75(8)
Acknowledgments
78(1)
References
78(5)
The Impact of Ions on Allosteric Functions in Human Liver Pyruvate Kinase
83(26)
Aron W. Fenton
Aileen Y. Alontaga
Introduction
84(2)
General Strategy to Assess Allosteric Coupling
86(2)
PYK Assay
88(3)
Buffers
91(2)
Divalent Cation
93(2)
Monovalent Cation
95(5)
Anion
100(3)
Concluding Remarks
103(6)
Acknowledgments
105(1)
References
105(4)
Conformational Stability of Cytochrome c Probed by Optical Spectroscopy
109(46)
Reinhard Schweitzer-Stenner
Andrew Hagarman
Daniel Verbaro
Jonathan B. Soffer
Introduction
110(3)
Basic Theory of Absorption and Circular Dichroism Spectroscopy
113(4)
Secondary Structure Analysis of Cytochrome c Using Ultra-Violet Circular Dichroism Spectroscopy
117(4)
Visible CD and Absorption Spectroscopy of Native Cytochrome c
121(10)
Nonnative States of Ferricytochrome c Probed by Visible CD and Absorption Spectroscopy
131(17)
Summary and Outlook
148(7)
References
149(6)
Examining Ion Channel Properties Using Free-Energy Methods
155(24)
Carmen Domene
Simone Furini
Introduction
156(1)
Free-Energy Calculations
157(2)
Thermodynamic Integration
159(1)
Free-Energy Perturbation
160(2)
Umbrella Sampling
162(2)
Adaptive Biasing Force
164(3)
Matadynamics
167(2)
Applications of Free-Energy Methods to Study Ion Channel Properties
169(5)
Conclusions and Future Outlook
174(5)
Acknowledgments
175(1)
References
175(4)
Examining Cooperative Gating Phenomena in Voltage-Dependent Potassium Channels: Taking the Energetic Approach
179(32)
Ofer Yifrach
Nitzan Zandany
Tzilhav Shem-Ad
Introduction
180(1)
High-Order Thermodynamic Mutant Cycle Coupling Analysis
181(7)
The Voltage-Activated Potassium Channel Allosteric Model System
188(5)
Deriving a Hill Coefficient for Assessing Cooperativity in Voltage-Dependent Ion Channels
193(3)
Direct Analysis of Cooperativity in Multisubunit Allosteric Proteins
196(6)
Long-Range Energetic Coupling Mediated Through Allosteric Communication Trajectories
202(5)
Concluding Remarks
207(4)
Acknowledgments
207(1)
References
207(4)
Thermal Stability of Collagen Triple Helix
211(22)
Yujia Xu
Introduction
212(2)
Methods
214(19)
References
231(2)
Electrostatic Contributions to the Stabilities of Native Proteins and Amyloid Complexes
233(26)
Sarah R. Sheftic
Robyn L. Croke
Jonathan R. LaRochelle
Andrei T. Alexandrescu
Introduction
234(2)
Practical Aspects of pKa Measurements by NMR
236(4)
Interpreting pKa Values in Terms of Stability
240(1)
Importance of the Reference (Unfolded) State
240(1)
Results from Globular Proteins
240(1)
Results from Coiled Coils
241(1)
Comparison of NMR and Crystallographic Results
242(1)
Comparison of NMR and Mutagenesis: Nonadditivity of Ion Pairs
243(1)
Improving Structure-Based Modeling of pKa Values
244(1)
Results with Micelle-Bound Proteins
245(4)
Results from Fibrillization Kinetics
249(4)
Conclusion
253(6)
Acknowledgments
254(1)
References
254(5)
Kinetics of Allosteric Activation
259(14)
Enrico Di Cera
Linkage
259(2)
Allosteric Activation at Steady State
261(5)
Different Types of Activation (Type la, Type Ib, and Type II)
266(3)
Concluding Remarks
269(4)
Acknowledgment
270(1)
References
270(3)
Thermodynamics of the Protein Translocation
273(20)
Alexej Kedrov
Tanneke den Blaauwen
Arnold J. M. Driessen
Introduction
274(4)
Example 1: SecA Nucleotide Binding
278(5)
Example 2: Probing SecB: Substrate Interactions
283(5)
Concluding Remarks
288(5)
References
289(4)
Thermodynamic Analysis of the Structure---Function Relationship in the Total DNA-Binding Site of Enzyme---DNA Complexes
293(32)
Wlodzimierz Bujalowski
Maria J. Jezewska
Introduction
294(2)
Thermodynamic Bases of Quantitative Equilibrium Spectroscopic Titrations
296(6)
Anatomy of the Total DNA-Binding Site in the PriA Helicase-ssDNA Complex
302(15)
Structure-Function Relationship in the Total ssDNA-Binding Site of the DNA Repair Pol X From ASFV
317(8)
Acknowledgments
322(1)
References
322(3)
Equilibrium and Kinetic Approaches for Studying Oligomeric Protein Folding
325(34)
Lisa M. Gloss
Introduction
326(1)
Methods to Monitor Folding and Association
327(9)
Equilibrium Studies
336(7)
Kinetic Studies
343(16)
Acknowledgments
354(1)
References
354(5)
Methods for Quantifying T cell Receptor Biding Affinities and Thermodynamics
359(24)
Kurt H. Piepenbrink
Brian E. Gloor
Kathryn M. Armstrong
Brian M. Baker
Introduction
360(2)
Isothermal Titration Calorimetry of TCR---Peptide/MHC Interactions
362(5)
Surface Plasmon Resonance Studies of TCR---Peptide/MHC Interactions
367(6)
Fluorescence Anisotropy as a Tool for Characterizing TCR---Peptide/MHC Interactions
373(5)
Concluding Remarks
378(5)
Acknowledgments
378(1)
References
378(5)
Thermodynamic and Kinetic Analysis of Bromodomain---Histone Interactions
383(26)
Martin Thompson
Introduction
384(1)
Fluorescence Anisotropy Theory and Concepts
384(2)
Developing Binding Models for the Analysis of Fluorescence Anisotropy Data
386(4)
Experimental Considerations in Designing Fluorescence Anisotropy Assays
390(1)
Preparation of Histone and Bromodomain Samples
391(1)
Fluorescence Anisotropy Measurements
392(3)
Kinetic Analysis
395(4)
Determination of Thermodynamic Parameters
399(1)
Thermodynamic Measurements
400(3)
Developing a Binding Model
403(2)
Concluding Remarks
405(4)
Acknowledgments
405(1)
References
405(4)
Thermodynamics of 2-Cys Peroxiredoxin Assembly Determined by Isothermal Titration Calorimetry
409(22)
Sergio Barranco-Medina
Karl-Josef Dietz
Introduction
410(2)
Dimer-Decamer Equilibrium
412(3)
Isothermal Titration Calorimetry---General Concepts
415(1)
ITC Dilution Experiments
416(2)
Material and Instruments
418(1)
Experimental Procedure
418(5)
Results, Data Analysis, and Discussion
423(5)
Conclusions
428(3)
Acknowledgments
428(1)
References
428(3)
Protein---Lipid Interactions: Role of Membrane Plasticity and Lipid Specificity on Peripheral Protein Interactions
431(24)
Jesse Murphy
Kristofer Knutson
Anne Hinderliter
Introduction
432(1)
Defining Protein---Lipid Interactions
433(1)
Selective Partitioning and Lipid Activities
434(1)
Protein---Protein Interactions at the Membrane Surface
435(2)
Measuring Protein---Lipid Interactions
437(2)
Modeling of Protein---Lipid Interactions
439(9)
Synopsis
448(7)
Acknowledgments
450(1)
References
451(4)
Predicting pKa Values with Continuous Constant pH Molecular Dynamics
455(22)
Jason A. Wallace
Jana K. Shen
Introduction
456(1)
Theoretical Methods for pKa Predictions
457(8)
Predicting Protein pKas with REX---CPHMD Simulations
465(5)
Conclusions
470(7)
Acknowledgment
471(1)
References
471(6)
Unfolding Thermodynamics of DNA Intramolecular Complexes Involving Joined Triple- and Double-Hellcal Motifs
477(26)
Irine Khutsishvili
Sarah Johnson
Hui-Ting Lee
Luis A. Marky
Introduction
478(3)
Materials and Methods
481(4)
Results and Discussion
485(14)
Conclusions
499(4)
Acknowledgments
499(1)
References
500(3)
Thermodynamics and Conformational Change Governing Domain---Domain Interactions of Calmodulin
503(24)
Susan E. O'Donnell
Rhonda A. Newman
Travis J. Witt
Rainbo Hultman
John R. Froehlig
Adam P. Christensen
Madeline A. Shea
Introduction
504(3)
Overexpression and Purification of rCaM Fragments
507(1)
Calcium-Binding Properties of N-Domain CaM Fragments
507(5)
Tertiary Constraints of N-Domain CaM Fragments
512(4)
Tertiary Conformation of N-Domain CaM Fragments
516(3)
High-Resolution Studies of N-Domain CaM Fragments
519(3)
Conclusions
522(5)
Acknowledgments
524(1)
References
525(2)
Use of Pressure Perturbation Calorimetry to Characterize the Volumetric Properties of Proteins
527(22)
Katrina L. Schweiker
George I. Makhatadze
Introduction
528(3)
Determination of the Coefficient of Thermal Expansion (αpr) Using PPC
531(2)
Sample Preparation
533(2)
Derivation of a Two-State Model for Analysis of PPC Data
535(4)
Practical Considerations
539(6)
Implications of Two-State Model for Future PPC Experiments
545(4)
References
545(4)
Solvent Denaturation of Proteins and Interpretations of the m Value
549(18)
J. Martin Scholtz
Gerald R. Grimsley
C. Nick Pace
Introduction
549(1)
Protein Unfolding or Denaturation
550(5)
Linear Extrapolation Method
555(1)
ΔG(H2O): Conformational Stability
556(2)
The m Value
558(4)
Concluding Remarks
562(5)
Acknowledgments
563(1)
References
563(4)
Measuring Cotranslational Folding of Nascent Polypeptide Chains on Ribosomes
567(24)
Patricia L. Clark
Krastyu G. Ugrinov
Introduction
568(2)
Translation and the Ribosome: Nascent Chain (RNC) Complex
570(2)
General Approaches for Generating Stalled RNC Complexes
572(5)
Methods for Preparing RNC Complexes
577(2)
Biophysical Studies with RNC Complexes
579(4)
Measuring Nascent Chain Cotranslational Folding and Rigidity by Limited Protease Digestion
583(1)
Future Directions
584(7)
References
585(6)
Author Index 591(12)
Subject Index 603