Atnaujinkite slapukų nuostatas

El. knyga: Birman-Schwinger Principle in Galactic Dynamics

  • Formatas: EPUB+DRM
  • Serija: Progress in Mathematical Physics 77
  • Išleidimo metai: 14-Aug-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030751869
  • Formatas: EPUB+DRM
  • Serija: Progress in Mathematical Physics 77
  • Išleidimo metai: 14-Aug-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030751869

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics.  The opening chapters lay the framework for the main result through detailed treatments of nonrelativistic galactic dynamics and the Vlasov-Poisson system, the Antonov stability estimate, and the period function $T_1$.  Then, as the main application, the Birman-Schwinger type principle is used to characterize in which cases the “best constant” in the Antonov stability estimate is attained.  The final two chapters consider the relation to the Guo-Lin operator and invariance properties for the Vlasov-Poisson system, respectively.  Several appendices are also included that cover necessary background material, such as spherically symmetric models, action-angle variables, relevant function spaces and operators, and some aspects of Kato-Rellich perturbation theory.  

A Birman-Schwinger Principle in Galactic Dynamics will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and applied mathematics.

Recenzijos

The book is written for specialists in galactic dynamics and for mathematical physicists attracted by gravity. The reward comes in understanding many aspects of the Vlasov-Poisson equation in a rigorous mathematically exact way. (Marek Nowakowski, Mathematical Reviews, October, 2022)

1 Introduction
1(22)
1.1 The Birman-Schwinger Principle
1(1)
1.2 Non-Relativistic Galactic Dynamics and the Vlasov-Poisson System
2(2)
1.3 Steady State Solutions
4(1)
1.4 Examples
5(1)
1.4.1 Polytropes
5(1)
1.4.2 King models
6(1)
1.5 Linearization and the Antonov Stability Estimate
6(2)
1.6 The Best Constant in the Antonov Stability Estimate
8(4)
1.7 Domains in Action-Angle Variables
12(4)
1.7.1 Polytropes Revisited
14(1)
1.7.2 King Models Revisited
15(1)
1.8 Summary of the Main Results
16(7)
2 The Antonov Stability Estimate
23(6)
3 On the Period Function Tx
29(24)
3.1 Upper Boundedness of T1
29(4)
3.2 Lower Boundedness of T1
33(4)
3.3 Further Properties of T1
37(14)
3.4 λ* ≤ δ21
51(2)
4 A Birman-Schwinger Type Operator
53(36)
4.1 The Operator Qz
53(25)
4.2 Relating g, to the Fact That λ is an Eigenvalue of L
78(8)
4.3 Some Further Results
86(3)
5 Relation to the Guo-Lin Operator
89(4)
6 Invariances
93(8)
Appendix A Spherical Symmetry and Action-Angle Variables 101(22)
Appendix B Function Spaces and Operators 123(24)
Appendix C An Evolution Equation 147(50)
Appendix D On Kato-Rellich Perturbation Theory 197(6)
References 203