Atnaujinkite slapukų nuostatas

El. knyga: Black Holes: A Laboratory for Testing Strong Gravity

  • Formatas: EPUB+DRM
  • Išleidimo metai: 01-Jun-2017
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811045240
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 01-Jun-2017
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811045240
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook introduces the current astrophysical observations of black holes, and discusses the leading techniques to study the strong gravity region around these objects with electromagnetic radiation. More importantly, it provides the basic tools for writing an astrophysical code and testing the Kerr paradigm. Astrophysical black holes are an ideal laboratory for testing strong gravity. According to general relativity, the spacetime geometry around these objects should be well described by the Kerr solution. The electromagnetic radiation emitted by the gas in the inner part of the accretion disk can probe the metric of the strong gravity region and test the Kerr black hole hypothesis. With exercises and examples in each chapter, as well as calculations and analytical details in the appendix, the book is especially useful to the beginners or graduate students who are familiar with general relativity while they do not have any background in astronomy or astrophysics.<


Part I Basic Concepts
1 Introduction
3(10)
1.1 Dark Stars in Newtonian Gravity
4(1)
1.2 Black Holes in Theoretical Physics
5(3)
1.2.1 Black Hole Solutions and No-Hair Theorem
5(1)
1.2.2 Beyond the Purely Classical Picture
6(2)
1.3 Black Holes in the Universe
8(3)
1.3.1 Discovery of Astrophysical Black Holes
8(1)
1.3.2 Recent Studies and Future Prospectives
9(2)
1.4 Open Problems
11(2)
References
11(2)
2 Black Hole Solutions
13(30)
2.1 Definition of Black Hole
13(3)
2.2 Black Holes in General Relativity
16(4)
2.2.1 Schwarzschild Solution
16(2)
2.2.2 Reissner-Nordstrom Solution
18(1)
2.2.3 Kerr Solution
19(1)
2.2.4 No-Hair Theorem
20(1)
2.3 Beyond the No-Hair Theorem
20(2)
2.4 Gravitational Collapse
22(9)
2.4.1 Dust Collapse
24(2)
2.4.2 Homogeneous Dust Collapse
26(2)
2.4.3 Inhomogeneous Dust Collapse
28(1)
2.4.4 Gravitational Collapse for a Distant Observer
29(2)
2.5 Beyond the Standard Picture
31(1)
2.6 Penrose Diagrams
32(11)
References
40(3)
3 Motion Around Black Holes
43(18)
3.1 Orbits in the Equatorial Plane
43(5)
3.2 Orbits in the Equatorial Plane in the Kerr Metric
48(3)
3.3 Geodesies in the Kerr Metric
51(3)
3.4 Image Plane of a Distant Observer
54(4)
3.4.1 General Case
55(1)
3.4.2 Kerr Spacetime
56(2)
3.5 Frame Dragging
58(3)
References
60(1)
4 Astrophysical Black Holes
61(28)
4.1 Stellar-Mass Black Holes
62(6)
4.1.1 Dynamical Mass Measurements
65(3)
4.2 Supermassive Black Holes
68(3)
4.3 Intermediate-Mass Black Holes
71(2)
4.4 Existence of Event Horizons
73(4)
4.4.1 Type I X-Ray Bursts
74(1)
4.4.2 X-Ray Binaries in Quiescent State
74(1)
4.4.3 SgrA*
75(2)
4.5 Spectral States
77(12)
4.5.1 Observations
78(4)
4.5.2 Theoretical Models
82(2)
References
84(5)
5 Observational Facilities
89(24)
5.1 X-Ray Observatories
89(10)
5.1.1 X-Ray Missions
93(3)
5.1.2 X-Ray Spectrum Analysis
96(3)
5.2 Gravitational Wave Detectors
99(14)
5.2.1 Resonant Detectors
103(4)
5.2.2 Interferometers
107(2)
5.2.3 Pulsar Timing Arrays
109(1)
References
110(3)
Part II Main Tools for Testing Astrophysical Black Holes
6 Thin Accretion Disks
113(24)
6.1 Novikov-Thorne Model
113(8)
6.1.1 Validity of the Novikov-Thorne Model
114(3)
6.1.2 General Case
117(2)
6.1.3 Kerr Spacetime
119(2)
6.2 Transfer Function for Thin Disks
121(3)
6.3 Calculation of the Transfer Function
124(4)
6.3.1 General Case
124(2)
6.3.2 Kerr Spacetime
126(2)
6.4 Evolution of the Spin Parameter
128(3)
6.4.1 Spins of Black Holes
130(1)
6.5 Deviations from the Kerr Metric
131(6)
6.5.1 Accretion Disk
132(1)
6.5.2 Electric Charge
133(2)
References
135(2)
7 Continuum-Fitting Method
137(16)
7.1 Calculation of the Spectrum
138(3)
7.2 Spin Measurements
141(3)
7.3 Polarization of the Disk's Spectrum
144(9)
References
151(2)
8 X-Ray Reflection Spectroscopy
153(28)
8.1 Reflection Process
154(7)
8.1.1 Photon Index of the Illuminating Radiation
156(1)
8.1.2 Ionization Parameter of the Disk Surface
157(1)
8.1.3 Elemental Abundance of the Disk
158(2)
8.1.4 Inclination Angle of the Reflected Radiation
160(1)
8.2 Iron Line Profile
161(8)
8.2.1 Impact of the Model Parameters
164(3)
8.2.2 Emissivity Profile from a Lamppost Corona
167(2)
8.3 Spin Measurements
169(2)
8.4 Validity of the Model
171(4)
8.4.1 Relativistic Origin of Broad Iron Lines
171(2)
8.4.2 Spin Measurements
173(2)
8.5 Reverberation Mapping
175(6)
References
178(3)
9 Quasi-periodic Oscillations
181(12)
9.1 Observations
183(2)
9.2 Fundamental Frequencies of a Test-Particle
185(4)
9.2.1 General Case
186(2)
9.2.2 Kerr Spacetime
188(1)
9.3 Relativistic Precession Models
189(1)
9.4 Resonance Models
190(3)
9.4.1 Parametric Resonances
190(1)
9.4.2 Forced Resonances
191(1)
9.4.3 Keplerian Resonances
191(1)
References
192(1)
10 Imaging Black Holes
193(14)
10.1 Imaging the Photon Capture Sphere
194(8)
10.1.1 Spherically Symmetric Spacetimes
196(1)
10.1.2 Kerr Metric
197(3)
10.1.3 General Case
200(1)
10.1.4 Intensity Map
201(1)
10.2 Imaging Thin Accretion Disks
202(1)
10.3 Description of the Boundary of the Shadow
202(5)
References
205(2)
11 Gravitational Waves
207(34)
11.1 Emission of Gravitational Waves
208(5)
11.1.1 Quadrupole Formula
210(3)
11.2 Response of Interferometer Detectors
213(3)
11.3 Matched Filtering
216(2)
11.4 Coalescing Black Holes
218(3)
11.5 Extreme-Mass Ratio Inspirals
221(6)
11.5.1 Teukolsky-Based Waveforms
223(3)
11.5.2 Kludge Waveforms
226(1)
11.6 Quasi-normal Modes
227(14)
11.6.1 Calculation Methods of Quasi-normal Modes
229(4)
11.6.2 Schwarzschild Metric
233(2)
11.6.3 Kerr Metric
235(1)
References
236(5)
Part III Testing the Kerr Paradigm
12 Non-Kerr Spacetimes
241(20)
12.1 Theoretically-Motivated Spacetimes
242(8)
12.1.1 Kerr Black Holes with Scalar Hair
242(3)
12.1.2 Black Holes in Einstein--Dilaton--Gauss--Bonnet Gravity
245(2)
12.1.3 Manko--Novikov Metric
247(3)
12.2 Phenomenological Parametrizations
250(8)
12.2.1 Johannsen--Psaltis Metric
251(3)
12.2.2 Johannsen Metric
254(1)
12.2.3 Konoplya--Rezzolla--Zhidenko Metric
255(2)
12.2.4 Ghasemi--Nodehi--Bambi Metric
257(1)
12.3 Important Remarks
258(3)
References
259(2)
13 Testing the Kerr Paradigm with X-Ray Observations
261(26)
13.1 Continuum-Fitting Method
261(6)
13.2 X-Ray Reflection Spectroscopy
267(13)
13.2.1 Fitting a Non-Kerr Model with Kerr Models
269(5)
13.2.2 Constraining Deviations from the Kerr Metric
274(3)
13.2.3 Iron Line Reverberation Mapping
277(3)
13.3 Quasi-periodic Oscillations
280(2)
13.4 Violation of the Kerr Bound |a*| ≤ 1
282(5)
References
284(3)
14 Tests with Other Approaches
287(18)
14.1 The Special Case of SgrA*
287(10)
14.1.1 Accretion Structure Imaging
287(4)
14.1.2 Accretion Structure Spectrum
291(1)
14.1.3 Orbiting Hot Spots
292(2)
14.1.4 Accurate Measurements in the Weak Field
294(3)
14.2 Testing the Kerr Paradigm in the Weak Gravity Region
297(1)
14.3 Gravitational Waves
298(7)
14.3.1 Constraints from GW150914
299(2)
References
301(4)
Appendix A Stationary and Axisymmetric Spacetimes 305(4)
Appendix B (r, θ)-Motion in the Kerr Spacetime 309(8)
Appendix C AGN Classification 317(4)
Appendix D Jets 321(6)
Appendix E Thick Accretion Disks 327(8)
Appendix F Astrophysical Constants 335(2)
Appendix G Glossary 337
Cosimo Bambi is Professor at the Department of Physics of Fudan University. He received the PhD from Ferrara University (Italy) in 2007. He was a postdoc at Wayne State University (Michigan), at IPMU at The University of Tokyo (Japan), in the group of Prof. Dvali at LMU Munich (Germany). He moved to Fudan University at the end of 2012 under the Thousand Young Talents Program. His research interests cover several areas in gravity, cosmology, and high energy astrophysics. He has published over 80 research papers in refereed journals and 2 review papers. He authored one textbook, and edited one volume (in ASSL) with Springer.