Atnaujinkite slapukų nuostatas

Blast Waves [Kietas viršelis]

  • Formatas: Hardback, 320 pages, aukštis x plotis: 235x155 mm, weight: 845 g, 30 Illustrations, color; X, 320 p. 30 illus. in color., 1 Hardback
  • Serija: Shock Wave and High Pressure Phenomena
  • Išleidimo metai: 31-Mar-2010
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642052878
  • ISBN-13: 9783642052873
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 320 pages, aukštis x plotis: 235x155 mm, weight: 845 g, 30 Illustrations, color; X, 320 p. 30 illus. in color., 1 Hardback
  • Serija: Shock Wave and High Pressure Phenomena
  • Išleidimo metai: 31-Mar-2010
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642052878
  • ISBN-13: 9783642052873
Kitos knygos pagal šią temą:
C.E. Needham has spent more than forty years exploring the field of blast and shock, and this book chronicles the lessons he has learned. Historical in perspective, it focuses on blast waves propagating in fluids or materials than can be treated as fluids.

The primary purpose of this text is to document many of the lessons that have been learned during the author's more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author's experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids.It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner.The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional structures.Intended for those with a basic knowledge of algebra and a solid grasp of the concepts of conservation of mass and energy, the text includes an introduction to blast wave terminology and conservation laws as well as a discussion of units and the importance of consistency.

Recenzijos

From the reviews:

This book, written by a distinguished expert on blast waves with more than 40 years of experience in the field, is a welcome addition to the blast wave community. Important aspects concerning the effects of blast waves on structures are thoroughly presented and illuminated. On the whole I find that the book will serve as an excellent guide and reference to practicing scientists, engineers, and researchers in the field of blast waves. It will be a valuable addition to the library. (Max Kandula, International Journal of Acoustics and Vibration, Vol. 16 (2), 2011)

1 Introduction
1(2)
1.1 Introduction
1(2)
2 Some Basic Air Blast Definitions
3(6)
2.1 Formation of a Shock Wave
5(1)
2.2 Methods for Generating a Shock Wave
6(3)
3 The Rankine-Hugoniot Relations
9(8)
3.1 Real Air Effects on Gamma
10(1)
3.2 Variable γ Rankine-Hugoniot Relations
11(6)
3.2.1 Some Useful Shock Relations
12(3)
References
15(2)
4 Formation of Blast Waves
17(20)
4.1 The Taylor Wave
17(1)
4.2 The Sedov Solution
18(2)
4.3 Rarefaction Waves
20(3)
4.4 Nuclear Detonation Blast Standard
23(14)
4.4.1 Description of Blast Wave Formation from a Nuclear Source
23(1)
4.4.2 Description of Energy Deposition and Early Expansion
23(5)
4.5 The 1 KT Nuclear Blast Standard
28(5)
4.5.1 Construction of the Fits
33(3)
References
36(1)
5 Ideal High Explosive Detonation Waves
37(28)
5.1 Chapman-Jouget Relations
37(3)
5.1.1 Equation of State
38(1)
5.1.2 Analytic Integration
39(1)
5.2 Solid Explosive Detonation
40(8)
5.2.1 TNT Detonation
41(7)
5.3 High Explosive Blast Standard
48(3)
5.4 Ideal Detonation Waves in Gasses
51(5)
5.5 Fuel-Air Explosives
56(9)
5.5.1 Gaseous Fuel-Air Explosives
57(2)
5.5.2 Liquid Fuel Air Explosives
59(1)
5.5.3 Solid Fuel Air Explosives (SFAE)
60(3)
References
63(2)
6 Cased Explosives
65(22)
6.1 Extremely Light Casings
65(3)
6.2 Light Casings
68(1)
6.3 Moderate to Heavily Cased Charges
69(12)
6.3.1 Fragmentation
71(1)
6.3.2 Energy Balance
72(3)
6.3.3 Gurney Relations
75(2)
6.3.4 Mott's Distribution
77(3)
6.3.5 The Modified Fano Equation
80(1)
6.4 First Principles Calculation of Blast from Cased Charges
81(1)
6.5 Active Cases
82(5)
References
85(2)
7 Blast Wave Propagation
87(14)
7.1 One Dimensional Propagation
89(3)
7.1.1 Numerical Representations of One Dimensional Flows
91(1)
7.2 Two Dimensional Propagation
92(2)
7.2.1 Numerical Representations of Two Dimensional Flows
93(1)
7.3 Three Dimensional Propagation
94(2)
7.3.1 Numerical Representations of Three Dimensional Flows
94(2)
7.4 Low Overpressure Propagation
96(5)
7.4.1 Acoustic Wave Propagation
97(2)
7.4.2 Non-Linear Acoustic Wave Propagation
99(1)
References
99(2)
8 Boundary Layers
101(14)
8.1 General Description
101(1)
8.2 Boundary Layer Formation and Growth
102(1)
8.3 Termination of a Boundary Layer
103(1)
8.4 Calculated and Experimental Boundary Layer Comparisons
104(11)
References
113(2)
9 Particulate Entrainment and Acceleration
115(12)
9.1 Particulate Sweep-up
115(1)
9.2 Pressure and Insertion Velocity
116(1)
9.3 Drag and Multi-Phase Flow
117(5)
9.4 Particulate Effects on Dynamic Pressure
122(1)
9.5 Effects of Water
123(4)
References
125(2)
10 Instabilities
127(12)
10.1 Raleigh-Taylor Instabilities
127(5)
10.2 Kelvin-Helmholtz Instabilities
132(3)
10.3 Richtmyer-Meshkov Instabilities
135(4)
References
137(2)
11 Measurement Techniques
139(18)
11.1 Use of Smoke Rockets
139(1)
11.2 Smoke Puffs
140(2)
11.3 Painted backdrops
142(1)
11.4 Overpressure Measurements
142(5)
11.4.1 Passive Techniques
144(1)
11.4.2 Self Recording Gauges
145(1)
11.4.3 Active Electronic Gauges
146(1)
11.5 Density Measurements
147(1)
11.6 Velocity Measurement
148(1)
11.7 Angle of Flow Measurement
148(1)
11.8 Temperature Measurement
149(1)
11.9 Dynamic Pressure Measurement
150(3)
11.10 Stagnation Pressure Measurement
153(1)
11.11 Total Impulse Gauge
154(3)
References
154(3)
12 Scaling Blast Parameters
157(14)
12.1 Yield Scaling
157(4)
12.1.1 Application to Nuclear Detonations
159(2)
12.2 Atmospheric Scaling
161(7)
12.3 Examples of Scaling
168(3)
13 Blast Wave Reflections
171(30)
13.1 Regular Reflections
171(2)
13.1.1 Regular Reflection at Non-perpendicular Incidence
172(1)
13.2 Mach Reflection
173(9)
13.2.1 Simple or Single Mach Reflection
173(2)
13.2.2 Complex Mach Reflection
175(1)
13.2.3 Double Mach Reflection
176(6)
13.3 Planar Reflections
182(12)
13.3.1 Single Wedge Reflections
182(10)
13.3.2 Rough Wedge Reflections
192(2)
13.4 Reflections from Curved Surfaces
194(7)
References
198(3)
14 Height of Burst Effects
201(46)
14.1 Ideal Surfaces
201(15)
14.1.1 Nuclear Detonations
203(2)
14.1.2 Solid High Explosive Detonations
205(11)
14.2 Range for Mach Transition
216(2)
14.3 Height of Burst Over Real Surfaces
218(9)
14.3.1 Surface Response
219(3)
14.3.2 Surface Roughness Effects
222(1)
14.3.3 Dust Scouring Effects
222(2)
14.3.4 Terrain Effects
224(3)
14.4 Thermal Interactions (precursors)
227(20)
14.4.1 Free Field Propagation in One Dimension
230(1)
14.4.2 Shock Tube Example
230(2)
14.4.3 Thermal Interactions Over Real Terrain
232(9)
14.4.4 Simulation of Thermal Layers
241(4)
References
245(2)
15 Structure Interactions
247(24)
15.1 Pressure Loads
248(3)
15.2 Impulse Loads
251(3)
15.3 Non Ideal Blast Wave Loads
254(2)
15.4 Negative Phase Effects on Structure Loads
256(1)
15.5 Effects of Structures on Propagation
257(4)
15.6 The Influence of Rigid and Responding Structures
261(10)
References
269(2)
16 External Detonations
271(10)
17 Internal Detonations
281(12)
17.1 Blast Propagation in Tunnels
287(6)
References
291(2)
18 Simulation Techniques
293(10)
18.1 Blast Waves in Shock Tubes
293(1)
18.2 High Explosive Charges
294(2)
18.3 Charge Arrays
296(2)
18.4 Use of Exit Jets to Simulate Nuclear Thermal Precursor Blast Environments
298(5)
References
302(1)
19 Some Notes on Non-ideal Explosives
303(10)
19.1 Properties of Non-ideal Explosives
304(1)
19.2 Combustion or Afterburning Dependency of Non-ideal Explosives
304(9)
19.2.1 Charge Size
304(1)
19.2.2 Casing Effects
304(2)
19.2.3 Proximity of Reflecting Surfaces
306(1)
19.2.4 Effects of Venting from the Structure
306(2)
19.2.5 Oxygen Availability
308(2)
19.2.6 Importance of Particle Size Distribution in Thermobarics
310(2)
References
312(1)
20 Modeling Blast Waves
313(20)
20.1 Non-linear Shock Addition Rules
313(1)
20.2 Image Bursts
314(4)
20.3 Modeling the Mach Stem
318(2)
20.4 Loads from External Sources
320(5)
20.4.1 A Model for Propagating Blast Waves Around Corners
320(5)
20.5 Blast Propagation Through an Opening in a Wall
325(8)
20.5.1 Angular Dependence of Transmitted Wave
327(1)
20.5.2 Blast Wave Propagation Through a Second Opening
328(2)
References
330(3)
Index 333