Atnaujinkite slapukų nuostatas

El. knyga: Blockchain, Metaverse and Trustworthy Systems: 6th International Conference, BlockSys 2024, Hangzhou, China, July 12-14, 2024, Revised Selected Papers, Part I

Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This two-volume set CCIS 2264 and CCIS 2265 constitutes the refereed proceedings of the 6th International Conference on Blockchain and Trustworthy Systems, BlockSys 2024, held in Hangzhou, China, during July 1214, 2024.





The 34 full papers  presented in these two volumes were carefully reviewed and selected from 74 submissions. The papers are organized in the following topical sections:





Part I: Blockchain and Data Mining; Data Security and Anomaly Detection; Blockchain Performance Optimization.





Part II: Frontier Technology Integration; Trustworthy System and Cryptocurrencies; Blockchain Applications.
.- Blockchain and Data Mining.



.- Intrusion Anomaly Detection with Multi-Transformer.



.- A Federated Learning Method Based on Linear Probing and Fine-Tuning.



.- Facilitating Feature and Topology Lightweighting: An Ethereum Transaction
Graph Compression Method for Malicious Account Detection.



.- A Secure Hierarchical Federated Learning Framework based on FISCO Group
Mechanism.



.- Research on Network Traffic Anomaly Detection Method Based on Deep
Learning.



.- Hyper-parameter Optimization and Proxy Re-encryption for Federated
Learning.



.- Data Security and Anomaly Detection.



.- Exploring Embedded Content in the Ethereum Blockchain: Data Restoration
and Analysis.



.- Task Allocation and Process Optimization of Data, Information, Knowledge,
and Wisdom (DIKW)-based Workflow Engine.



.- Location Data Sharing Method Based on Blockchain and Attribute-Based
Encryption.



.- Implicit White-Box Implementations of Efficient Double-Block-Length MAC.



.- A Survey on Blockchain Scalability.



.- Supply Chain Financing Model Embedded with Full-Process Blockchain.



.- Blockchain Performance Optimization.



.- ReCon: Faster Smart Contract Vulnerability Detection by Reusable Symbolic
Execution Tree.



.- SVD-SESDG: Smart Contract Vulnerability  Detection Technology via Symbol
Execution and  State Variable Dependency Graph.



.- Dual-view Aware Smart Contract Vulnerability Detection for Ethereum.



.- Blockchain Layered Sharding Algorithm Based on Transaction
Characteristics.



.- An Empirical Study on the Performance of EVMs and Wasm VMs for Smart
Contract Execution.



.- Ponzi Scheme Detection in Smart Contracts Using Heterogeneous Semantic
Graph.