Atnaujinkite slapukų nuostatas

El. knyga: Blockchains for Network Security: Principles, technologies and applications

Edited by (University of Exeter, College of Engineerin), Edited by (China University of Geosciences (CUG), School of Computer Science, China), Edited by (Huazhong University of Science and Technology, School of Electronic Information and Communications, Wuhan, China), Edited by
  • Formatas: EPUB+DRM
  • Serija: Computing and Networks
  • Išleidimo metai: 30-Nov-2020
  • Leidėjas: Institution of Engineering and Technology
  • Kalba: eng
  • ISBN-13: 9781785618741
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Computing and Networks
  • Išleidimo metai: 30-Nov-2020
  • Leidėjas: Institution of Engineering and Technology
  • Kalba: eng
  • ISBN-13: 9781785618741
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Blockchain technology is a powerful, cost-effective method for network security. Essentially, it is a decentralized ledger for storing all committed transactions in trustless environments by integrating several core technologies such as cryptographic hash, digital signature and distributed consensus mechanisms.



Over the past few years, blockchain technology has been used in a variety of network interaction systems such as smart contracts, public services, Internet of Things (IoT), social networks, reputation systems and security and financial services. With its widespread adoption, there has been increased focus on utilizing blockchain technologies to address network security concerns and vulnerabilities as well as understanding real-world security implications.



The book begins with an introduction to blockchains, covering key principles and applications. Further chapters cover blockchain system architecture, applications and research issues; blockchain consensuses and incentives; blockchain applications, projects and implementations; blockchain for internet of things; blockchain in 5G and 6G networks; edgechain to provide security in organization based multi agent systems; blockchain driven privacy-preserving machine learning; performance evaluation of differential privacy mechanisms in blockchain based smart metering; scaling-out blockchains with sharding; blockchain for GIS; and finally blockchain applications in remote sensing big data management and production.
About the editors xi
1 Introduction To Blockchains
1(22)
Haojun Huang
Jialin Tian
Geyong Min
Wang Miao
1.1 Overview
2(3)
1.1.1 Characteristics of blockchain
2(2)
1.1.2 Classifications of blockchain systems
4(1)
1.2 Structure of block and chain
5(5)
1.2.1 Block
5(3)
1.2.2 Fork
8(2)
1.3 Key technologies involved in blockchain
10(6)
1.3.1 Hash algorithm and Merkle tree
10(3)
1.3.2 Asymmetric cryptography and digital signature
13(1)
1.3.3 Consensus mechanism
14(2)
1.4 Evolution
16(3)
1.4.1 Blockchain 1.0--digital currency
17(1)
1.4.2 Blockchain 2.0--digital finance
17(1)
1.4.3 Blockchain 3.0--digital society
18(1)
References
19(4)
2 Blockchain System Architecture, Applications And Research Issues
23(16)
Wang Miao
Geyong Min
Haojun Huang
Haozhe Wang
2.1 System architecture
24(12)
2.1.1 Classifications of blockchain system
24(1)
2.1.2 Physical layer
25(2)
2.1.3 Data layer
27(1)
2.1.4 Consensus layer
28(2)
2.1.5 Smart contract layer
30(1)
2.1.6 Application layers
31(3)
2.1.7 Potential issues
34(2)
2.2 Conclusion
36(1)
References
36(3)
3 Blockchain Consensuses And Incentives
39(26)
Meijun Li
Gaoyang Liu
Jialin Tian
Chen Wang
Yang Yang
Shaohua Wan
3.1 Blockchain consensuses
39(18)
3.1.1 Consensus classification
41(1)
3.1.2 Proof-of-work
41(4)
3.1.3 Proof-of-stake
45(2)
3.1.4 Delegated proof-of-stake
47(2)
3.1.5 Practical Byzantine fault tolerance
49(2)
3.1.6 Other consensus protocols
51(6)
3.2 Consensus comparison
57(2)
3.3 Incentives and consensus
59(1)
3.4 Conclusions and future directions
60(1)
References
61(4)
4 Blockchain Applications, Projects And Implementations
65(22)
Haojun Huang
Geyong Min
Wang Miao
Haozhe Wang
4.1 Blockchain applications
65(6)
4.1.1 Original intention: digital currencies
65(2)
4.1.2 Function evolution: financial and business services
67(1)
4.1.3 Digital art: record-keeping services
68(1)
4.1.4 Security solution: network security
69(2)
4.1.5 Blockchain government
71(1)
4.2 Blockchain projects and implementations
71(11)
4.2.1 Bitcoin
71(3)
4.2.2 Ethereum
74(1)
4.2.3 Corda
75(1)
4.2.4 Hyperledger Fabric/Sawtooth
76(1)
4.2.5 Ripple
76(1)
4.2.6 BigchainDB
77(1)
4.2.7 Quantstamp
77(1)
4.2.8 Stratis
78(1)
4.2.9 Wanchain
78(1)
4.2.10 Nebulas
79(1)
4.2.11 Zilliqa
79(1)
4.2.12 Decentralized Accessible Content Chain
80(1)
4.2.13 Cardano
80(1)
4.2.14 ArcBlock
80(2)
References
82(5)
5 Blockchain For Internet Of Things
87(50)
Xu Wang
Xuan Zha
Guangsheng Yu
Wei Ni
Ren Ping Liu
5.1 Introduction
87(2)
5.2 Limitations of IoT security
89(4)
5.2.1 Characteristics of IoT
90(1)
5.2.2 Security analysis on IoT
91(2)
5.3 Existing blockchain technologies
93(5)
5.3.1 General data structure
94(1)
5.3.2 Byzantine Generals' Problem and consensus protocol
95(2)
5.3.3 Security analysis on blockchain
97(1)
5.4 Blockchain for IoT: applications
98(11)
5.4.1 Blockchain platforms for IoT
98(1)
5.4.2 Blockchain-based industrial IoT projects
99(1)
5.4.3 Blockchain-based academic IoT designs
100(1)
5.4.4 The structure of blockchain-based IoT applications
101(2)
5.4.5 Challenges of applying blockchain in IoT applications
103(2)
5.4.6 Potential blockchain designs in IoT applications
105(2)
5.4.7 Security discussions on blockchain-based IoT applications
107(2)
5.5 Blockchain for IoT: technologies
109(10)
5.5.1 The principle of unit data validation
111(4)
5.5.2 The structure of unit data
115(2)
5.5.3 Comparison of blockchain for IoT application
117(2)
5.6 Future research directions
119(2)
5.6.1 Hierarchical chains
119(1)
5.6.2 Sharding
119(1)
5.6.3 Side chain
120(1)
5.6.4 IoT-specific consensus
120(1)
5.6.5 Simplified payment verification
121(1)
5.6.6 Editable blockchain
121(1)
5.7 Conclusion
121(1)
References
122(15)
6 Blockchain In 5G And 6G Networks
137(38)
Minghao Wang
Xuhan Zuo
Tianqing Zhu
6.1 Blockchain in 5G networks
139(8)
6.1.1 Blockchain-enabled technologies
139(5)
6.1.2 Applications and services via blockchain in 5G networks
144(3)
6.2 Blockchain in 6G networks
147(3)
6.2.1 Blockchain-enabled technologies
147(1)
6.2.2 Applications and services via blockchain in 6G networks
148(2)
6.3 Issues and problems in blockchain networks
150(7)
6.3.1 Security-related issues
151(4)
6.3.2 Privacy-related issues
155(1)
6.3.3 Other related issues
156(1)
6.4 Conclusion
157(1)
Acknowledgment
158(1)
Appendix A
158(2)
References
160(15)
7 Edgechain To Provide Security In Organization-Based Multi-Agent Systems
175(14)
Diego Valdeolmillos
Roberto Casado-Vara
Juan M. Corchado
7.1 Introduction
175(2)
7.2 Virtual organization of agents
177(1)
7.2.1 Service facilitator
178(1)
7.2.2 Organization management system
178(1)
7.3 Blockchain
178(3)
7.3.1 Side chain
180(1)
7.4 Edge blockchain
181(2)
7.5 Case study: bank services optimization
183(2)
7.5.1 Scenario: speed-up services
184(1)
7.6 Conclusion
185(1)
Acknowledgements
186(1)
References
186(3)
8 Bloc Keh A In-Driven Privacy-Preserving Machine Learning
189(12)
Youyang Qu
Longxiang Gao
Yong Xiang
8.1 GAN-DP and blockchain
189(4)
8.1.1 Wasserstein generative adversarial net
190(1)
8.1.2 Generator and discriminator
190(1)
8.1.3 GAN-DP with a DP identifier
191(1)
8.1.4 Decentralized privacy
192(1)
8.1.5 Further discussion
193(1)
8.2 Federated learning and blockchain
193(5)
8.2.1 Existing issues
194(1)
8.2.2 How blockchain benefits FL
194(1)
8.2.3 Blockchain-enabled federated learning
195(3)
8.3 Conclusion remarks
198(1)
References
198(3)
9 Performance Evaluation Of Differential Privacy Mechanisms In Blockchain-Based Smart Metering
201(24)
Muneeb Ul Hassan
Mubashir Husain Rehmani
Jinjun Chen
9.1 Introduction
201(4)
9.1.1 Key contributions
203(1)
9.1.2 Related work
203(2)
9.2 Preliminaries of our work
205(3)
9.2.1 Differential privacy mechanisms
205(2)
9.2.2 Real-time smart metering and privacy issues
207(1)
9.2.3 Blockchain network
208(1)
9.3 Functioning and system model
208(6)
9.3.1 System model
208(2)
9.3.2 Design goals
210(1)
9.3.3 Adversary model
210(1)
9.3.4 Algorithmic foundation
211(3)
9.4 Performance evaluation
214(7)
9.4.1 Simulation parameters
215(1)
9.4.2 Private real-time data reporting
215(2)
9.4.3 Mean absolute error
217(3)
9.4.4 Summary and lessons learnt
220(1)
9.5 Conclusion and future directions
221(1)
References
221(4)
10 Scaling-Out Blockchains With Sharding: An Extensive Survey
225(46)
Guangsheng Yu
Xu Wang
Kan Yu
Wei Ni
J. Andrew Zhang
Ren Ping Liu
10.1 Introduction
225(4)
10.1.1 Our contributions
227(1)
10.1.2 Related work
228(1)
10.1.3 Paper outline
228(1)
10.2 Sharding review and survey methodology
229(5)
10.2.1 Overview of the sharding technology
229(1)
10.2.2 Survey methodology
229(5)
10.3 Description
234(25)
10.3.1 Intra-consensus protocol
234(13)
10.3.2 Atomicity of cross-shard
247(6)
10.3.3 General improvements
253(6)
10.4 Discussions
259(2)
10.4.1 Future trend for reducing the overhead
259(1)
10.4.2 Future trend for strengthening the security and atomicity
260(1)
10.5 Conclusions
261(1)
References
262(9)
11 Blockchain For Gis: An Overview
271(18)
Yong Wang
Lizhe Wang
Dongfang Zhang
Chengjun Li
11.1 Introduction
271(1)
11.2 Related technologies
272(3)
11.2.1 Introduction to GIS
272(2)
11.2.2 Blockchain technologies
274(1)
11.3 Blockchain GIS
275(2)
11.3.1 Opportunities of integrating blockchain with GIS
275(1)
11.3.2 Architecture of blockchain GIS
276(1)
11.4 Application in GIS
277(5)
11.4.1 Reengineering of process involving GIS
278(1)
11.4.2 Application of geospatial data sharing
279(1)
11.4.3 Spatial decision-making
280(2)
11.5 Challenges and future trends
282(2)
11.5.1 Efficiency
282(1)
11.5.2 Privacy protection
283(1)
11.5.3 Application of cross-blockchain GIS
284(1)
11.6 Conclusion
284(1)
References
285(4)
12 Blockchain Application In Remote Sensing Big Data Management And Production
289(26)
Jining Yan
Lizhe Wang
Feng Zhang
Xiaodao Chen
Xiaohui Huang
Jiabao Li
12.1 Introduction
289(2)
12.2 Challenges in remote sensing big data management and production
291(1)
12.3 Blockchain-based remote sensing big data management
292(12)
12.3.1 Distributed data integration
292(5)
12.3.2 Data entering blockchain
297(6)
12.3.3 Distributed data storage and digital watermarking
303(1)
12.3.4 Data sharing
304(1)
12.4 Blockchain-based remote sensing big data production
304(2)
12.4.1 Advantages
305(1)
12.4.2 Implementation process
305(1)
12.5 Blockchain-based remote sensing big data management and production system
306(3)
12.6 Conclusions
309(1)
References
310(5)
Index 315
Haojun Huang is an associate professor at the School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China. His current research interests include Internet of Things, Network Function Virtualization, Software-Defined Networking, and Artificial Intelligence for networking. He holds a Ph.D. degree in Communications Engineering from the University of Science and Technology of China.



Lizhe Wang is the Dean and ChuTian chair professor at the School of Computer Science, China University of Geosciences (CUG), and a professor at the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (CAS), China. His research interests include cloud computing, HPC, e-science, and spatial data processing. He is a fellow of the British Computer Society and the IET and a series board member of the IET Book Series on Big Data.



Yulei Wu is a senior lecturer with the Department of Computer Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, United Kingdom. His main research focuses on computer networks, networked systems, software-defined networks and systems, network management, and network security and privacy. He is an associate editor of IEEE Transactions on Network and Service Management and an area editor of Computer Networks (Elsevier).



Kim-Kwang Raymond Choo holds the Cloud Technology Endowed Professorship at the University of Texas at San Antonio, United States. He is the recipient of various awards, including the 2019 IEEE Technical Committee on Scalable Computing (TCSC) Award for Excellence in Scalable Computing (Middle Career Researcher).