Atnaujinkite slapukų nuostatas

El. knyga: Bone Histology: An Anthropological Perspective

4.80/5 (10 ratings by Goodreads)
Edited by (Ohio State University, Columbus, USA), Edited by (Office of the Chief Medical Examiner, New York, New York, USA)
  • Formatas: 418 pages
  • Išleidimo metai: 22-Sep-2011
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040081129
  • Formatas: 418 pages
  • Išleidimo metai: 22-Sep-2011
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040081129

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A broad understanding of bone and tooth microstructure is necessary for constructing the biological profile of an individual or individuals within a population. Bone Histology: An Anthropological Perspective brings together authors with extensive experience and expertise in various aspects of hard tissue histology to provide a comprehensive discussion of the application of methods, current theories, and future directions in hard tissue research related to anthropological questions.

Topics discussed include:











The biology underlying skeletal growth and development leading to adult skeletal morphology Current research in understanding in bone modeling Histological features of dental hard tissues and their utility in biological anthropology Histological analysis as a means to differentiate human from nonhuman bone and for the purpose of age estimation The biomechanics of cortical bone Histotaphonomy and how postmortem microstructural change can be used for taphonomic inquiry The application of light microscopy in paleopathology to classify pathological conditions The histological study of bone tissue of archaeological origin Researchers access to collections of bone samples with known demographic information Technological aspects of hard tissue histology, including laboratory requirements and high-resolution imaging

In most cases, the physical remains of humans available to bioarchaeologists, paleopathologists, and paleontologists are limited to skeletal material. Fortunately, these hard tissues are a storehouse of information about biological processes experienced during the life of an individual. This volume provides an overview of the current state of research and potential applications in anthropology and other fields that employ a histological approach to the study of hard tissues.
Preface vii
Editors xiii
Contributors xv
1 Bone Remodeling, Histomorphology, and Histomorphometry
1(22)
Sam Stout
Christian Crowder
1.1 Introduction
1(1)
1.2 Bone Biology and Histomorphology
2(10)
1.2.1 Bone Remodeling
2(5)
1.2.2 Theory and the Origins of the "New Bone Biology"
7(1)
1.2.2.1 The Mechanostat
8(1)
1.2.2.2 The Utah Paradigm
8(1)
1.2.2.3 Osteocyte Inhibitor Theory
9(1)
1.2.2.4 The Principle of Cellular Accommodation Theory
10(1)
1.2.3 Bone Remodeling and Histological Age Estimation
10(2)
1.3 Bone Histomorphometry
12(4)
1.3.1 Static Histomorphometry
13(2)
1.3.2 Dynamic Histomorphometry
15(1)
1.4 Reliability of Histological Analyses
16(1)
1.5 Conclusions
17(6)
References
17(6)
2 Growth and Development: Morphology, Mechanisms, and Abnormalities
23(22)
James H. Gosman
2.1 Introduction
23(1)
2.2 Endochondral Ossification
24(5)
2.2.1 General Process
24(1)
2.2.2 Morphological Features
24(2)
2.2.3 Cellular Morphology
26(1)
2.2.4 Regulatory Framework
27(2)
2.3 Ontogenetic Changes in Cortical and Trabecular Architecture
29(1)
2.3.1 Ontogenetic Patterns and Mechanical Loading
29(1)
2.4 Environmental and Mechanobiological Influences
30(3)
2.4.1 Early Onset-Later Disease: Maternal-Fetal Environment
30(1)
2.4.2 Diet/Nutrition
31(1)
2.4.3 Bone Functional Adaptation
32(1)
2.5 Growth Abnormalities
33(5)
2.5.1 Growth Rate
34(1)
2.5.2 Growth Faltering: Stunting
35(1)
2.5.3 Growth Failure: Stature
35(1)
2.5.4 Catch-Up Growth
36(2)
2.6 Conclusion
38(7)
References
38(7)
3 Making the Mold: A Microstructural Perspective on Bone Modeling during Growth and Mechanical Adaptation
45(46)
Corey M. Maggiano
3.1 Introduction
45(2)
3.2 Defining Modeling
47(3)
3.2.1 Growth and Modeling
48(1)
3.2.2 Intramembranous and Endochondral Bone Modeling
48(1)
3.2.3 Modeling and Remodeling
48(2)
3.3 Modeling Form
50(17)
3.3.1 Membrane Histology and Vascularization
50(3)
3.3.2 Modeling Formation and Resorption
53(1)
3.3.2.1 Primary Bone Histology
53(2)
3.3.2.2 Primary Lamellae and Vessel Entrapment
55(5)
3.3.2.3 Modeling Microstructure
60(7)
3.4 Modeling Function
67(10)
3.4.1 Growth
67(1)
3.4.2 Drift
67(2)
3.4.3 Metaphyseal Reduction and Medullary Extension
69(3)
3.4.4 Lamellar Compaction
72(2)
3.4.5 Functional Adaptation
74(1)
3.4.5.1 The Primacy Question
74(1)
3.4.5.2 The Mechanical Environment
75(2)
3.5 Variation
77(1)
3.6 Current and Future Directives
78(13)
Acknowledgments
81(1)
References
82(9)
4 Histological Features of Dental Hard Tissues and Their Utility in Forensic Anthropology
91(18)
Debbie Guatelli-Steinberg
Michaela Huffman
4.1 Introduction
91(1)
4.2 Enamel Growth Processes and Associated Histological Features
92(4)
4.3 Enamel Histology and Forensic Applications
96(2)
4.4 Dentine: Histological Structures Associated with Growth and Age
98(2)
4.5 Dentine Histology and Age-at-Death Determinations
100(1)
4.6 Cementum: Histological Features
101(1)
4.7 Cementum Histology and Age-at-Death Estimation
102(2)
4.8 Conclusions
104(5)
Acknowledgments
105(1)
References
105(4)
5 Differentiating Human from Nonhuman Bone Microstructure
109(26)
Dawn M. Mulhern
Douglas H. Ubelaker
5.1 Introduction
109(1)
5.2 Basic Bone Microstructure
110(1)
5.3 The Human Growth Pattern
111(1)
5.4 Qualitative Differences in Mammalian Bone
112(7)
5.4.1 Order Lagomorpha
113(1)
5.4.2 Order Perissodactyla
113(1)
5.4.3 Order Artiodactyla
113(2)
5.4.4 Order Carnivora
115(1)
5.4.5 Order Primates
116(3)
5.5 Quantitative Differences in Mammalian Bone
119(11)
5.5.1 Order Lagomorpha
122(1)
5.5.2 Order Perissodactyla
122(1)
5.5.3 Order Artiodactyla
122(5)
5.5.4 Order Carnivora
127(1)
5.5.5 Order Primates
127(3)
5.6 Discriminant Function Analysis
130(1)
5.7 Conclusion
130(5)
References
131(4)
6 Histological Age-at-Death Estimation
135(18)
Margaret Streeter
6.1 Introduction
135(1)
6.2 Histological Age Estimation in Adult Bones
136(2)
6.2.1 Age Estimation Methods in Long Bones
136(1)
6.2.2 Age Estimation Methods in Other Bones
137(1)
6.3 Histology of the Subadult Rib
138(6)
6.3.1 Growth and Modeling in the Subadult Rib
139(2)
6.3.2 Remodeling in the Subadult Rib
141(3)
6.4 Histological Age Estimation in Subadult Ribs
144(4)
6.4.1 Four Developmental Phases of the Subadult Rib Cortex
144(1)
6.4.1.1 Phase I (Less than 5 Years of Age)
144(1)
6.4.1.2 Phase II (5 to 9 Years of Age)
145(1)
6.4.1.3 Phase III (10 to 17 Years of Age)
146(1)
6.4.1.4 Phase IV (18 to 21 Years of Age)
146(2)
6.5 Conclusion
148(5)
References
148(5)
7 Interpreting Load History in Limb-Bone Diaphyses: Important Considerations and Their Biomechanical Foundations
153(1)
John G. Skedros
7.1 Introduction
154(6)
7.1.1 Considerations for Interpreting the Functional Adaptation of Bone
155(5)
7.2 Basic Biomechanical Concepts
160(9)
7.2.1 Structural Properties of Bone
161(3)
7.2.2 Material Properties of Bone
164(3)
7.2.3 Using the Stress-Strain Curve for Considering Mechanisms of Bone Adaptation Produced by Remodeling-Induced Affects on CFO, Osteon Morphotypes, and Osteon Population Densities
167(2)
7.3 Consideration 1: The Stressed Volume Effect
169(4)
7.3.1 Exceptions to the Rule and the Human Bias
172(1)
7.4 Consideration 2: The Modeling-Remodeling Distinction
173(6)
7.4.1 Determining the Ontogenetic Phase
174(1)
7.4.2 Modeling-Remodeling Synergism/Compensation
174(3)
7.4.3 The Division of Labor
177(2)
7.5 Consideration 3: The Shear Resistance-Priority Hypothesis
179(3)
7.6 Consideration 4: The Mechanical Relevance of Osteons, Secondary Osteon Morphotypes, and Predominant Collagen Fiber Orientation
182(9)
7.6.1 The Many Potentially Modifiable Characteristics of Osteons
182(1)
7.6.2 Habitual Loads Often Require Histomorphological Adaptation
182(1)
7.6.3 Predominant Collagen Fiber Orientation (CFO)
183(3)
7.6.4 Early Observations and Studies of Osteon Morphotypes
186(1)
7.6.4.1 Strength Enhancement versus Toughening
186(3)
7.6.4.2 When Strain Data Are Lacking, What Is the Most Reliable Structural or Material Characteristic for Interpreting
Load History in Limb Bones?
189(1)
7.6.4.3 Exceptions to the Rule and Important Caveats
190(1)
7.7 Consideration 5: Load-Complexity Categories: Bending, Intermediate A, Intermediate B, and Torsion
191(12)
7.7.1 Bending vs. Torsion
193(2)
7.7.2 Solutions in Engineered Structures: The Single I-Beam versus Multiple I-Beam Analogy
195(2)
7.7.3 Cross-Sectional Shape and Cortical Thickness Can Lead One Astray
When Interpreting Load History
197(1)
7.7.4 The Value of Bending: Predictability, Fluid Flow, Nutrient Delivery, and Beneficial Signals
197(1)
7.7.5 Changes in Strain Distribution Caused by Changes in Load Predictability Can Lead to Stress Fractures: Example in Thoroughbred Horses
198(1)
7.7.6 Between-Bone Examples of Using the Load-Complexity Categories
199(2)
7.7.7 The Multidomain Load Hypothesis: A Within-Bone Example of Using the Load-Complexity Categories
201(2)
7.8 Consideration 6: Skeletal Immaturity, Differential Growth Rates, and Precocial versus Altricial Ambulation
203(3)
7.8.1 Cortical Modeling Drifts
203(1)
7.8.2 The Lack of Secondary Osteons
204(1)
7.8.3 Bone Histology in Precocial versus Altricial Growth
204(1)
7.8.4 Amprino's Rule
204(2)
7.9 Conclusions
206
Appendix: Definitions
206(2)
References
208
8 Bone Fracture: Biomechanics and Risk
153(88)
Amanda M. Agnew
John H. Bolte IV
8.1 Introduction
221(2)
8.1.1 Classifying Fracture Context
221(2)
8.2 Biology of Fracture Risk
223(9)
8.2.1 Adaptation
223(1)
8.2.2 Beyond Bone Mass
223(2)
8.2.3 Mechanical Properties
225(1)
8.2.3.1 Determinants of Material Properties in Bone
226(3)
8.2.4 Microdamage and Remodeling
229(1)
8.2.4.1 Cortical Porosity
230(1)
8.2.4.2 Bone's Defense
231(1)
8.3 Discussion
232(9)
8.3.1 Bone Quantity in the Past
232(1)
8.3.2 Fracture Patterns
232(1)
8.3.3 Conclusions
233(1)
References
233(8)
9 Histotaphonomy
241(12)
Lynne S. Bell
9.1 Introduction
241(1)
9.2 Nomenclature
242(1)
9.3 Historical Background
242(1)
9.4 Recent Work
243(3)
9.4.1 Distribution of Bacterial Change
245(1)
9.4.2 Classification of Postmortem Microstructure
245(1)
9.4.3 Other Worlds
246(1)
9.5 Can Postmortem Microstructural Change Be Used for Taphonomic Inquiry?
246(3)
9.6 Conclusion
249(4)
References
250(3)
10 Light Microscopic Analysis of Macerated Pathologically Changed Bones
253(44)
Michael Schultz
10.1 Introduction
253(2)
10.2 Materials and Methods
255(3)
10.2.1 Materials Examined in Paleohistology
255(1)
10.2.2 Short Overview of the Methods and Techniques in Paleohistology
256(2)
10.3 Some Principles of Pathophysiology of Bony Tissue Observable in Dry Bones
258(2)
10.4 The Light Microscopic Analysis of Dry Bone
260(29)
10.4.1 What Can Light Microscopy Contribute to Paleopathology?
260(2)
10.4.2 Diagnosing Diseases in Macerated Bone
262(1)
10.4.2.1 Subperiosteal Hemorrhages
263(1)
10.4.2.2 Specific and Nonspecific Bone Inflammations
264(2)
10.4.3 Selected Examples of Microscopic Diagnoses in Dry Bone
266(1)
10.4.3.1 Porotic Hyperostosis of the Orbital Roof (Cribra orbitalia)
266(3)
10.4.3.2 Porotic Hyperostosis of the External Skull Vault (Cribra cranii externa)
269(1)
10.4.3.3 Porotic Hyperostosis of the Internal Skull Vault {Cribra cranii interna)
269(5)
10.4.3.4 Nonspecific Inflammatory Processes in the Skull Vault
274(1)
10.4.3.5 Specific Inflammatory Processes in the Skull Vault
274(4)
10.4.3.6 Nonspecific Inflammatory Processes in the Shafts of Long Bones
278(3)
10.4.3.7 Specific Inflammatory Processes in the Shafts of Long Bones
281(4)
10.4.3.8 Tumorous Bone Growth within Compact Bone of the Shafts of Long Bones
285(1)
10.4.3.9 Pseudopathology
285(4)
10.5 Final Perspectives
289(1)
10.6 Acknowledgments
290(7)
References
291(6)
11 Histological Analyses of Human Bone from Archaeological Contexts
297(16)
Susan Pfeiffer
Deborrah Pinto
11.2 Areas of Application
298(8)
11.2.1 Is the Bone Tissue from Homo sapiens?
298(1)
11.2.2 Age at Death
299(3)
11.2.3 Habitual Activity and Diet
302(2)
11.2.4 Pathological Conditions
304(2)
11.3 Conclusions
306(7)
References
307(6)
12 Bone Histology Collections of the National Museum of Health and Medicine
313(14)
Brian F. Spatola
Franklin E. Damann
Bruce D. Ragsdale
12.1 Bone Histology Collections at the NMHM
313(1)
12.2 Lent Clifton Johnson and AFIP Orthopedic Pathologists
314(1)
12.3 Collections History and Composition
315(9)
12.3.1 Johnson-Sweet Whole-Mount Collection of Orthopedic Pathology
315(4)
12.3.2 Historic Collections (Codman and Phemister)
319(2)
12.3.3 Kerley Collection
321(1)
12.3.3.1 Human Bone Sections
321(1)
12.3.3.2 Nonhuman Bone Sections
322(1)
12.3.4 Recent Acquisitions
323(1)
12.4 Collections Management and Access
324(1)
12.5 Conclusions
324(3)
Disclaimer
325(1)
References
325(2)
13 The Melbourne Femur Collection: How a Forensic and Anthropological Collection Came to Have Broader Applications
327(14)
C. David
L. Thomas
John G. Clement
13.1 Any Collection of Human Tissues: An Important Issue of Trust
327(1)
13.2 Establishing the Melbourne Femur Collection
328(2)
13.3 Age-Estimation Studies
330(4)
13.4 Genetic Markers for Osteoporosis
334(2)
13.5 The Significance of the MFC to Bone Research and Contributions to the Scientific Literature
336(1)
13.6 Concluding Remarks
337(4)
References
338(3)
14 The Histology Laboratory and Principles of Microscope Instrumentation
341(20)
Helen Cho
14.1 Introduction
341(1)
14.2 The Histology Laboratory
341(10)
14.2.1 Preparing Bone Thin Sections for Microscopic Analysis
342(1)
14.2.2 Preparing Samples for Embedding
342(1)
14.2.3 Embedding
343(2)
14.2.4 Cutting Thick Sections
345(2)
14.2.5 Grinding, Polishing, and Mounting Thin Sections on Microscope Slides
347(4)
14.3 Principles of Light Microscopy
351(6)
14.3.1 A Brief History of Light Microscopy
352(1)
14.3.2 Physics of Light
353(1)
14.3.3 Anatomy of a Light Microscope
354(2)
14.3.4 Polarizing Light Microscope
356(1)
14.4 Recommendations and Conclusions
357(4)
References
359(2)
15 Technological Developments in the Analysis of Cortical Bone Histology: The Third Dimension and Its Potential in Anthropology
361(16)
David M. L. Cooper
C. David
L. Thomas
John G. Clement
15.1 Introduction
361(1)
15.2 Historical Perspectives
362(1)
15.3 3D Histological Techniques
362(2)
15.4 Micro-Computed Tomography
364(5)
15.4.1 Laboratory Micro-CT
364(3)
15.4.2 Synchrotron Micro-CT
367(2)
15.5 Anthropological Potentials
369(1)
15.6 Conclusions
370(7)
Acknowledgments
370(1)
References
370(7)
Index 377
Christian M. Crowder is currently the Deputy Director of Forensic Anthropology for the Office of Chief Medical Examiner in New York City and a board certified forensic anthropologist. He is also an adjunct lecturer at Pace University, holds a faculty position at the New York University Medical Center and an affiliation with the NYU Anthropology Department. In his present position with the OCME, Dr. Crowder assists with anthropology casework in the five boroughs of New York City.

Sam D. Stout is currently professor of Anthropology in the Department of Anthropology at the Ohio State University, and professor emeritus of the University of Missouri Department of Anthropology. His research and teaching interests are in skeletal biology, particularly from a microscopic (histomorphological) perspective, and its applications in bioarachaeology and forensic anthropology. He is a Fellow of the American Academy of Forensic Sciences and the American Association for the Advancement of Science.