|
|
1 | (8) |
|
1.1 Basic Idea of the Bootstrap |
|
|
1 | (4) |
|
1.2 The R-Project for Statistical Computing |
|
|
5 | (1) |
|
1.3 Usage of R in This Book |
|
|
5 | (2) |
|
1.3.1 Further Non-Statistical R-Packages |
|
|
6 | (1) |
|
|
7 | (2) |
|
2 Generating Random Numbers |
|
|
9 | (12) |
|
2.1 Distributions in the R-Package Stats |
|
|
9 | (1) |
|
2.2 Uniform df. on the Unit Interval |
|
|
10 | (1) |
|
2.3 The Quantile Transformation |
|
|
11 | (4) |
|
2.4 The Normal Distribution |
|
|
15 | (1) |
|
|
16 | (3) |
|
2.6 Generation of Random Vectors |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
3 The Classical Bootstrap |
|
|
21 | (26) |
|
3.1 An Introductory Example |
|
|
21 | (6) |
|
3.2 Basic Mathematical Background of the Classical Bootstrap |
|
|
27 | (5) |
|
3.3 Discussion of the Asymptotic Accuracy of the Classical Bootstrap |
|
|
32 | (2) |
|
3.4 Empirical Process and the Classical Bootstrap |
|
|
34 | (2) |
|
3.5 Mathematical Framework of Mallow's Metric |
|
|
36 | (8) |
|
|
44 | (1) |
|
|
45 | (2) |
|
|
47 | (26) |
|
|
47 | (2) |
|
|
49 | (4) |
|
|
53 | (7) |
|
4.4 Goodness-of-Fit (GOF) Test |
|
|
60 | (5) |
|
4.5 Mathematical Framework of the GOF Test |
|
|
65 | (5) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
73 | (92) |
|
5.1 Homoscedastic Linear Regression under Fixed Design |
|
|
74 | (16) |
|
5.1.1 Model-Based Bootstrap |
|
|
77 | (7) |
|
|
84 | (4) |
|
5.1.3 LSE Bootstrap Asymptotic |
|
|
88 | (2) |
|
5.2 Linear Correlation Model and the Bootstrap |
|
|
90 | (16) |
|
5.2.1 Classical Bootstrap |
|
|
93 | (3) |
|
|
96 | (3) |
|
5.2.3 Mathematical Framework of LSE |
|
|
99 | (2) |
|
5.2.4 Mathematical Framework of Classical Bootstrapped LSE |
|
|
101 | (3) |
|
5.2.5 Mathematical Framework of Wild Bootstrapped LSE |
|
|
104 | (2) |
|
5.3 Generalized Linear Model (Parametric) |
|
|
106 | (36) |
|
5.3.1 Mathematical Framework of MLE |
|
|
121 | (12) |
|
5.3.2 Mathematical Framework of Bootstrap MLE |
|
|
133 | (9) |
|
5.4 Semi-parametric Model |
|
|
142 | (20) |
|
5.4.1 Mathematical Framework of LSE |
|
|
147 | (6) |
|
5.4.2 Mathematical Framework of Wild Bootstrap LSE |
|
|
153 | (9) |
|
|
162 | (2) |
|
|
164 | (1) |
|
6 Goodness-of-Fit Test for Generalized Linear Models |
|
|
165 | (66) |
|
6.1 MEP in the Parametric Modeling Context |
|
|
167 | (20) |
|
|
168 | (3) |
|
|
171 | (6) |
|
|
177 | (10) |
|
6.2 MEP in the Semi-parametric Modeling Context |
|
|
187 | (7) |
|
|
190 | (2) |
|
|
192 | (2) |
|
6.3 Comparison of the GOF Tests under the Parametric and Semi-parametric Setup |
|
|
194 | (3) |
|
6.4 Mathematical Framework: Marked Empirical Processes |
|
|
197 | (17) |
|
|
198 | (5) |
|
6.4.2 The MEP with Estimated Model Parameters Propagating in a Fixed Direction |
|
|
203 | (4) |
|
6.4.3 The MEP with Estimated Model Parameters Propagating in an Estimated Direction |
|
|
207 | (7) |
|
6.5 Mathematical Framework: Bootstrap of Marked Empirical Processes |
|
|
214 | (15) |
|
6.5.1 Bootstrap of the BMEP |
|
|
218 | (3) |
|
6.5.2 Bootstrap of the EMEP |
|
|
221 | (8) |
|
|
229 | (1) |
|
|
230 | (1) |
Appendix A Boot Package |
|
231 | (6) |
Appendix B SimTool Package |
|
237 | (12) |
Appendix C Bootgof Package |
|
249 | (4) |
Appendix D Session Info |
|
253 | (2) |
Index |
|
255 | |