Atnaujinkite slapukų nuostatas

El. knyga: Bordered Heegaard Floer Homology

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type $D$) is a module over the algebra and the other of which (type $A$) is an $\mathcal A_\infty$ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the $\mathcal A_\infty$ tensor product of the type $D$ module of one piece and the type $A$ module from the other piece is $\widehat{HF}$ of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for $\widehat{HF}$. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.
Introduction; $\mathcal A_\infty$ structures;
The algebra associated to a pointed matched circle;
Bordered Heegaard diagrams;
Moduli spaces;
Type $D$ modules;
Type $A$ modules;
Pairing theorem via nice diagrams;
Pairing theorem via time dilation;
Gradings;
Bordered manifolds with torus boundary;
Appendix A. Bimodules and change of framing;
Index of definitions;
Bibliography.