Atnaujinkite slapukų nuostatas

El. knyga: Bounded and Precise Word Problems for Presentations of Groups

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"We introduce and study the bounded word problem and the precise word problem for groups given by means of generators and defining relations. For example, for every finitely presented group, the bounded word problem is in NP, i.e., it can be solved in nondeterministic polynomial time, and the precise word problem is in PSPACE, i.e., it can be solved in polynomial space. The main technical result of the paper states that, for certain finite presentations of groups, which include the Baumslag-Solitar one-relator groups and free products of cyclic groups, the bounded word problem and the precise word problem can be solved in polylogarithmic space. As consequences of developed techniques that can be described as calculus of brackets, we obtain polylogarithmic space bounds for the computational complexity of the diagram problem for free groups, for the width problem for elements of free groups, and for computation of the area defined by polygonal singular closed curves in the plane. We also obtain polynomial time bounds for these problems"--

Ivanov introduces and studies the bounded word problem and the precise word problem for groups given by means of generators and defining relations. For example, he says, for every finitely presented group, the bounded word problem is in NP-that is, can be solved in nondeterministic polynomial time-and the precise word problem is in PSPACE-that is, can be solved in polynomial space. The main technical result of the paper states that, for certain finite presentations of groups-which include the Baumslag-Solitar one-relator groups and free products of cyclic groups-the bounded word problem and the precise word problem can be solved in polylogarithmic space. Using techniques he calls calculus of brackets, he obtains polylogarithmic space bounds for the computational complexity of the diagram problem for free groups, for the width problem for elements of free groups, and for computation of the area defined by polygonal singular closed curves in the plane. He also obtains polynomial time bounds for these problems. Annotation ©2020 Ringgold, Inc., Portland, OR (protoview.com)
S. V. Ivanov, University of Illinois, Urbana, IL.