Atnaujinkite slapukų nuostatas

El. knyga: Bounded Variation and Around

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The aim of this monograph is to give a thorough and self-contained account of functions of (generalized) bounded variation, the methods connected with their study, their relations to other important function classes, and their applications to various problems arising in Fourier analysis and nonlinear analysis.

In the first part the basic facts about spaces of functions of bounded variation and related spaces are collected, the main ideas which are useful in studying their properties are presented, and a comparison of their importance and suitability for applications is provided, with a particular emphasis on illustrative examples and counterexamples. The second part is concerned with (sometimes quite surprising) properties of nonlinear composition and superposition operators in such spaces. Moreover, relations with Riemann-Stieltjes integrals, convergence tests for Fourier series, and applications to nonlinear integral equations are discussed.

The only prerequisite for understanding this book is a modest background in real analysis, functional analysis, and operator theory. It is addressed to non-specialists who want to get an idea of the development of the theory and its applications in the last decades, as well as a glimpse of the diversity of the directions in which current research is moving. Since the authors try to take into account recent results and state several open problems, this book might also be a fruitful source of inspiration for further research.
Preface v
Introduction 1(6)
0 Prerequisites
7(48)
0.1 The Lebesgue integral
7(11)
0.2 Some functional analysis
18(7)
0.3 Basic function spaces
25(18)
0.4 Comments on
Chapter 0
43(3)
0.5 Exercises to
Chapter 0
46(9)
1 Classical BV-spaces
55(57)
1.1 Functions of bounded variation
55(16)
1.2 Bounded variation and continuity
71(13)
1.3 Functions of bounded Wiener variation
84(7)
1.4 Functions of several variables
91(9)
1.5 Comments on
Chapter 1
100(4)
1.6 Exercises to
Chapter 1
104(8)
2 Nonclassical BV-spaces
112(96)
2.1 The Wiener-Young variation
112(13)
2.2 The Waterman variation
125(27)
2.3 The Schramm variation
152(9)
2.4 The Riesz--Medvedev variation
161(8)
2.5 The Korenblum variation
169(13)
2.6 Higher order Wiener-type variations
182(5)
2.7 Comments on
Chapter 2
187(15)
2.8 Exercises to
Chapter 2
202(6)
3 Absolutely continuous functions
208(60)
3.1 Continuity and absolute continuity
208(3)
3.2 The Vitali--Banach--Zaretskij theorem
211(7)
3.3 Reconstructing a function from its derivative
218(13)
3.4 Rectifiable functions
231(9)
3.5 The Riesz--Medvedev theorem
240(4)
3.6 Higher order Riesz-type variations
244(5)
3.7 Comments on
Chapter 3
249(11)
3.8 Exercises to
Chapter 3
260(8)
4 Riemann-Stieltjes integrals
268(56)
4.1 Classical RS-integrals
268(24)
4.2 Bounded variation and duality
292(6)
4.3 Bounded p-variation and duality
298(4)
4.4 Nonclassical RS-integrals
302(9)
4.5 Comments on
Chapter 4
311(5)
4.6 Exercises to
Chapter 4
316(8)
5 Nonlinear composition operators
324(61)
5.1 The composition operator problem
324(20)
5.2 Boundedness and continuity
344(10)
5.3 Spaces of differentiable functions
354(10)
5.4 Global Lipschitz continuity
364(4)
5.5 Local Lipschitz continuity
368(9)
5.6 Comments on
Chapter 5
377(5)
5.7 Exercises to
Chapter 5
382(3)
6 Nonlinear superposition operators
385(40)
6.1 Boundedness and continuity
385(15)
6.2 Lipschitz continuity
400(6)
6.3 Uniform boundedness and continuity
406(9)
6.4 Functions of several variables
415(4)
6.5 Comments on
Chapter 6
419(4)
6.6 Exercises to
Chapter 6
423(2)
7 Some applications
425(28)
7.1 Convergence criteria for Fourier series
425(4)
7.2 Fourier series and Waterman spaces
429(6)
7.3 Applications to nonlinear integral equations
435(9)
7.4 Comments on
Chapter 7
444(9)
References 453(14)
List of functions 467(1)
List of symbols 468(4)
Index 472
Jürgen Appell, University of Würzburg, Germany; Jozef Banas, Technical University of Rzeszow, Poland; Nelson José Merentes Dķaz, Central University of Venezuela, Caracas, Venezuela.