Atnaujinkite slapukų nuostatas

El. knyga: Bowtie Methodology: A Guide for Practitioners

(Aviation Consultant)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Bow Tie Methodology (BTM) consists of two methods, Fault Tree Analysis (FTA) and Event Tree Analysis (ETA), which are connected by a single event. The methodology is holistic and provides the tools and pre-event analysis, which is also called the risk calculations, and post-event analysis, also called the risk mitigations, of quality and safety related events. There are plenty of articles or chapters on this methodology, however there is no book that covers everything in one place. The book is filled with examples taken from the aviation industry and elaborates theory implemented in practice, which gives quality and safety practitioners a guidance on how to use and apply BTM in practice.

Preface ix
About the Author xiii
Acronyms and Abbreviations xv
1 Introduction to Bowtie Methodology
1(24)
1.1 Introduction
1(2)
1.2 BM in Oil and Petroleum Industry
3(2)
1.3 Context of Investigations in Science and Industry
5(2)
1.4 BM and Software
7(2)
1.5 Main Event
9(3)
1.6 Risk Management
12(3)
1.7 ALARP
15(2)
1.8 Using the BM in Risk Management
17(3)
1.9 Determining the Severity of the Main Event
20(2)
1.10 Benefits of BM
22(3)
2 Probability
25(24)
2.1 Introduction
25(2)
2.2 "Black Swan" Events
27(1)
2.3 Sets
28(2)
2.4 Sets and Probabilities
30(3)
2.5 Basics of Probability
33(4)
2.6 Dependent Events
37(2)
2.7 Bayes' Theorem
39(3)
2.8 Distribution of Outcomes
42(1)
2.9 Combinatorial Analysis
43(6)
2.9.1 Variations (V)
43(1)
2.9.2 Permutations (Per)
44(2)
2.9.3 Combinations (C)
46(3)
3 Statistics
49(10)
3.1 Introduction
49(1)
3.2 Statistics and Probability
50(1)
3.3 Mean and Standard Deviation
51(3)
3.4 Inferential Statistics and Safety
54(1)
3.5 Context of Statistical Investigation
55(4)
4 Boolean Algebra
59(14)
4.1 Introduction
59(1)
4.2 Boolean Symbols for Engineering
60(3)
4.3 Boolean Functions
63(2)
4.4 Canonical or Standardized Form of Boolean Functions
65(2)
4.5 Simplifying Boolean Functions
67(3)
4.6 Minimal Cut Set (MCS)
70(3)
5 Reliability
73(12)
5.1 Introduction
73(1)
5.2 Basics of Reliability
74(3)
5.3 Reliability of Complex Systems
77(4)
5.4 Reliability of Equipment and Reliability of Services
81(1)
5.5 Reliability of Humans and Organizations
82(1)
5.6 Using Reliability for Probability Calculations
83(2)
6 System
85(16)
6.1 Introduction
85(1)
6.2 Critical Systems
86(1)
6.3 Functioning of the System
87(3)
6.4 System Characteristics
90(3)
6.5 Failure or Success
93(2)
6.6 Faults and Failures
95(2)
6.7 Effects, Modes, and Mechanisms
97(4)
7 Fault Tree Analysis
101(12)
7.1 Introduction
101(1)
7.2 Symbols Used for FT
102(2)
7.3 Executing FTA
104(9)
7.3.1 Gathering Knowledge
104(2)
7.3.2 Defining the System
106(1)
7.3.3 Fault Tree Construction
106(1)
7.3.4 Qualitative Analysis
107(2)
7.3.5 Quantitative Analysis
109(1)
7.3.6 Adjusting the System
110(1)
7.3.7 Monitoring the System
110(3)
8 FTA for Instrumental Landing System (ILS)
113(16)
8.1 Introduction to ILS
113(1)
8.2 Determining the System and Its Boundaries
114(1)
8.3 Gathering Knowledge for LLZ
115(1)
8.4 Fault Tree for LLZ CAT III
116(2)
8.5 Qualitative Analysis
118(3)
8.6 Quantitative Analysis
121(4)
8.6.1 Characteristics for SiS for LLZ CAT III
121(1)
8.6.2 Probabilities for Transmitters and Monitors
122(2)
8.6.3 Other Probabilities
124(1)
8.6.4 Final Calculation
125(1)
8.7 Coherent and Noncoherent FTA
125(4)
9 FTA for My Home Fire
129(12)
9.1 Determining the System and Its Boundaries
129(1)
9.2 Gathering Knowledge for Fires
130(2)
9.3 Fault Tree for My Home Fire
132(3)
9.4 Qualitative Analysis for My FT
135(1)
9.5 Quantitative Analysis for My FT
136(3)
9.6 "Epitaph" for My Home Fire FT
139(2)
10 Event Tree Analysis
141(14)
10.1 Introduction
141(1)
10.2 Main Event and Consequences
142(1)
10.3 "Black Swan" Events and ETA
143(1)
10.4 Executing ETA
144(2)
10.5 Event Tree (ET) Constructions
146(1)
10.6 How the "Ideal" ETA Works
147(1)
10.7 Probabilities with "Ideal" ETA
148(2)
10.8 How the "Real" ETA Works
150(2)
10.9 Qualitative and Quantitative Analysis
152(3)
11 Weaknesses of Bowtie Methodology
155(10)
11.1 Introduction
155(1)
11.2 Modeling BM
156(1)
11.3 Integrity of Data Used
157(2)
11.4 Global Warming, Decision-Making, and BM
159(2)
11.5 Weaknesses of FTA
161(1)
11.6 Weaknesses of ETA
162(3)
12 How to Improve Safety with Bowtie Methodology
165(10)
12.1 Introduction
165(1)
12.2 Preventive and Corrective Measures
165(2)
12.3 Risk Control
167(1)
12.4 Control by Feedback Circuit
168(2)
12.5 Measures for Risk Elimination and Mitigation
170(5)
12.5.1 Redesign
170(1)
12.5.2 Isolation
171(1)
12.5.3 Automation
171(1)
12.5.4 Barriers
172(1)
12.5.5 Absorption
173(1)
12.5.6 Dilution
173(1)
12.5.7 Oversight
174(1)
13 Future of BM
175(10)
13.1 Introduction
175(1)
13.2 Future of FTA
175(6)
13.2.1 Hip HOPS
176(1)
13.2.2 Component Fault Tree
177(1)
13.2.3 State/Event Fault Tree
178(1)
13.2.4 Binary Decision Diagram
179(1)
13.2.5 Boolean Logic Driven Markov Processes
180(1)
13.3 Future of ETA
181(4)
13.3.1 Containment Event Tree Analysis
181(1)
13.3.2 Dynamic Event Tree Analysis Method
182(3)
Final Words 185(2)
Index 187
Sasho Andonov is a Graduated Engineer in Electronics and Telecommunications and has earned a Master Degree in Metrology and Quality Management at Ss. Cyril and Methodius University in Skopje, Macedonia. Sasho has 21 years experience in aviation, especially in the area of ATM/CNS, Quality and Safety Management and 10 years experience in standardization and accreditation. He is a member of the technical board in the electro-technics, information technology and telecommunications area of the Institute of Standardization of Republic of Macedonia and a member of the Sectors Committee for electrics, electronics and electrical machines of the Institute of Accreditation of Republic of Macedonia.



Sasho has contributed to 11 international conferences and symposiums with his papers mostly in area of satellite navigation, calibration and safety, and quality management.