Atnaujinkite slapukų nuostatas

El. knyga: Brain Informatics: 16th International Conference, BI 2023, Hoboken, NJ, USA, August 1-3, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the proceedings of the 16th International Conference on Brain Informatics, BI 2023, which was held in Hoboken, NJ, USA, during August 1–3, 2023.

The 40 full papers presented in this book were carefully reviewed and selected from 101 submissions. The papers are divided into the following topical sections: cognitive and computational foundations of brain science; investigations of human Information processing systems; brain big data analytics, curation and management; informatics paradigms for brain and mental health research; brain-machine intelligence and brain-inspired computing; and the 5th international workshop on cognitive neuroscience of thinking and reasoning.


Cognitive and Computational Foundations of Brain Science: Fusing
Structural and Functional Connectivity using Disentangled VAE for Detecting
MCI.- Modulation of Beta Power as a Function of Attachment Style and Feedback
Valence.- Harnessing the Potential of EEG in Neuromarketing with Deep
Learning and Riemannian Geometry.- A Model of the Contribution of Interneuron
Diversity to Recurrent Network Oscillation Generation and Information
Coding.- Measuring Stimulus-Related Redundant and Synergistic Functional
Connectivity with Single Cell Resolution in Auditory Cortex.- Fusing
Simultaneously Acquired EEG and fMRI via Hierarchical Deep
Transcoding.- Investigations of Human Information Processing
Systems: Decoding Emotion Dimensions Arousal and Valence Elicited on EEG
Responses to Videos and Images: A Comparative Evaluation.- Stabilize
Sequential Data Representation via Attractor Module.- Investigating the
Generative Dynamics of Energy-Based Neural Networks.- Exploring Deep Transfer
Learning Ensemble for Improved Diagnosis and Classification of Alzheimers
Disease.- Brain Big Data Analytics, Curation and Management: Effects of EEG
Electrode Numbers on Deep Learning-Based Source Imaging.- Graph Diffusion
Reconstruction Model for Addictive Brain-Network Computing.- MR Image
Super-Resolution using Wavelet Diffusion for Predicting Alzheimers
Disease.- Classification of Event-Related Potential Signals with a Variant of
UNet Algorithm using a Large P300 Dataset.- Dyslexia Data Consortium
Repository: A Data Sharing and Delivery Platform for Research.- Conversion
from Mild Cognitive Impairment to Alzheimers Disease: A Comparison of
Tree-based Machine Learning Algorithms for Survival Analysis.- Predicting
Individual Differences from Brain Responses to Music: A Comparison of
Functional Connectivity Measure.- Multiplex Temporal Networks for Rapid
Mental Workload Classification.- Super-Resolution MRH Reconstruction for
Mouse Models.- Bayesian Time Series Classifier for Decoding Simple Visual
Stimuli from Intracranial Activity.- Variability of Non-parametric HRF in
Interconnectedness and its Association in Deriving Resting State
Network.- BrainSegNeT: A Lightweight Brain Tumor Segmentation Model based on
U-Net and Progressive Neuron Expansion.- Improving Prediction Quality of Face
Image Preference using Combinatorial Fusion Algorithm.- MMDF-ESI: Multi-Modal
Deep Fusion of EEG and MEG for Brain Source Imaging.- Rejuvenating Classical
Source Localization Methods with Spatial Graph Filters.- Prediction of
Cannabis Addictive Patients with Graph Neural Networks.- Unsupervised
Sparse-view Backprojection via Convolutional and Spatial Transformer
Networks.- Latent Neural Source Recovery via Transcoding of Simultaneous
EEG-fMRI.- Informatics Paradigms for Brain and Mental Health
Research: Increasing the Power of Two-Sample T-Tests in Health Psychology
using a Compositional Data Approach.- Estimating Dynamic Posttraumatic Stress
Symptom Trajectories with Functional Data Analysis.- Comparison Between
Explainable AI Algorithms for Alzheimers Disease Prediction
Using EfficientNet Models.- Social and Non-social Reward Learning Contexts
for Detection of Major Depressive Disorder using EEG: A Machine Learning
Approach.- Transfer Learning-Assisted DementiaNet: A Four Layer Deep CNN for
Accurate Alzheimers Disease Detection from MRI Images.- Multimodal
Approaches for Alzheimer's Detection Using Patients' Speech and
Transcript.- Brain-Machine Intelligence and Brain-Inspired
Computing.- Exploiting Approximate Joint Diagonalization for Covariance
Estimation in Imagined Speech Decoding.- Automatic Sleep-Wake Scoring with
Optimally Selected EEG Channels from High-Density EEG.- EEG Source Imaging of
Hand Movement-Related Areas: An Evaluation of the Reconstruction Accuracy
with Optimized Channels.- Bagging the Best: A Hybrid SVM-KNN Ensemble for
Accurate and Early Detection of Alzheimer's and Parkinson's Diseases.- Roe: A
Computational-Efficient Anti-Hallucination Fine-Tuning Technology for Large
Language Model Inspired by Human Learning Process.- The 5th International
Workshop on Cognitive Neuroscience of Thinking and Reasoning: Brain
Intervention Therapy Dilemma: Functional Recovery versus Identity.