Atnaujinkite slapukų nuostatas

El. knyga: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part I

Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This two-volume set LNCS 12658 and 12659 constitutes the thoroughly refereed proceedings of the 6th International MICCAI Brainlesion Workshop, BrainLes 2020, the International Multimodal Brain Tumor Segmentation (BraTS) challenge, and the Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification (CPM-RadPath) challenge. These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in Lima, Peru, in October 2020.*





The revised selected papers presented in these volumes were organized in the following topical sections: brain lesion image analysis (16 selected papers from 21 submissions); brain tumor image segmentation (69 selected papers from 75 submissions); and computational precision medicine: radiology-pathology challenge on brain tumor classification (6 selected papers from 6 submissions).





*The workshop and challenges were held virtually.
Invited Papers.- Glioma Diagnosis and Classification: Illuminating the
Gold Standard.- Multiple Sclerosis Lesion Segmentation - A Survey of
Supervised CNN-Based Methods.- Computational Diagnostics of GBM Tumors in the
Era of Radiomics and Radiogenomics.- Brain Lesion Image Analysis.- Automatic
Segmentation of Non-Tumor Tissues in Glioma MR Brain Images Using Deformable
Registration with Partial Convolutional Networks.- Convolutional neural
network with asymmetric encoding and decoding structure for brain vessel
segmentation on computed tomographic angiography.- Volume Preserving Brain
Lesion Segmentation.- Microstructural modulations in the hippocampus allow to
characterizing relapsing-remitting versus primary progressive multiple
sclerosis.- Symmetric-Constrained Irregular Structure Inpainting for Brain
MRI Registration with Tumor Pathology.- Multivariate analysis is sufficient
for lesion-behaviour mapping.- Label-Efficient Multi-Task Segmentation using
Contrastive Learning.- Spatio-temporal Learning from Longitudinal Data for
Multiple Sclerosis Lesion Segmentation.- MMSSD: Multi-scale and Multi-level
Single Shot Detector for Brain Metastases Detection.- Unsupervised 3D Brain
Anomaly Detection.- Assessing Lesion Segmentation Bias of Neural Networks on
Motion Corrupted Brain MRI Tejas Sudharshan Mathai, Yi Wang, Nathan Cross.-
Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning
Regression.- Bayesian Skip Net: Building on Prior Information for the
Prediction and Segmentation of Stroke Lesions.- Brain Tumor Segmentation.-
Brain Tumor Segmentation Using Dual-Path Attention U-net in 3D MRI Images.-
Multimodal Brain Image Analysis and Survival Prediction.- Using Neuromorphic
Attention-based Neural Networks.- Context Aware 3D UNet for Brain Tumor
Segmentation.- Modality-Pairing Learning for Brain Tumor Segmentation.-
Transfer Learning for Brain Tumor Segmentation.- Efficient embedding network
for 3D brain tumor segmentation.- Segmentation of the multimodal brain tumor
images used Res-U-Net.- Vox2Vox: 3D-GAN for Brain Tumour Segmentation.-
Automatic Brain Tumor Segmentation with Scale Attention Network.- Impact of
Spherical Coordinates Transformation Pre-processing in Deep Convolution
Neural Networks for Brain Tumor Segmentation and Survival Prediction.-
Overall Survival Prediction for Glioblastoma on Pre-Treatment MRI Using
Robust Radiomics and Priors.- Glioma segmentation using encoder-decoder
network and survival prediction based on  cox analysis.- Brain tumor
segmentation with self-ensembled, deeply-supervised 3D U-net neural networks:
a BraTS 2020 challenge solution.- Brain tumour segmentation using a triplanar
ensemble of U-Nets on MR images.- MRI brain tumor segmentation using a 2D-3D
U-Net ensemble.- Multimodal Brain Tumor Segmentation and Survival Prediction
Using a 3D Self-Ensemble ResUNet.- MRI Brain Tumor Segmentation and
Uncertainty Estimation using 3D-UNet architectures.- Utility of Brain
Parcellation in Enhancing Brain Tumor Segmentation and Survival Prediction.-
Uncertainty-driven refinement of tumor core segmentation using 3D-to-2D
networks with label uncertainty.- Multi-Decoder Networks with Multi-Denoising
Inputs for Tumor Segmentation.- MultiATTUNet: Brain Tumor Segmentation and
Survival Multitasking.- A Two-Stage Cascade Model with Variational
Autoencoders and Attention Gates for MRI Brain Tumor Segmentation.- Ensemble
of Two Dimensional Networks for Bain Tumor Segmentation.- Cascaded
Coarse-to-Fine Neural Network for Brain Tumor Segmentation.- Low-Rank
Convolutional Networks for Brain Tumor Segmentation.- Brain tumour
segmentation using cascaded 3D densely-connected U-net.- Segmentation then
Prediction: A Multi-task Solution to Brain Tumor Segmentation and Survival
Prediction.- Enhancing MRI Brain Tumor Segmentation with an Additional
Classification Network.- Self-training for Brain Tumour Segmentation with
Uncertainty Estimation and Biophysics-Guided Survival Prediction.