Atnaujinkite slapukų nuostatas

El. knyga: Calculus to Analysis: An Introductory Transition

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book addresses the analysis of functions of a real variable and transitions from the standard calculus sequence to mathematical analysis.  The author presents the limits and convergence of sequences of functions, illustrates the limitations of the Riemann integral, and discusses the need for a new integral: the Lebesgue integral.  The fundamental concepts of the theory of calculus of one variable is presented in addition to limits, continuity, derivatives and its applications, and integrals and their applications.  The tone and language of the book is kept as informal as possible along with the descriptions and examples to aid learning.  The book is concise and presents single variable advanced calculus leading up to Fourier analysis. In addition, the book sets up sufficient background for a course in measure theory and Lebesgue integration.  

Preface.- The Fundamentals.- Sequences, Limits, and Series.- Continuous Functions.- Differentiable Functions.- The Riemann Integral.- Sequences of Functions and their Convergence.- Fourier Series I.- Fourier Series II.- Conclusions.

Arturo Portnoy, Ph.D., is a Professor of Mathematical Sciences at the University of Puerto Rico at Mayagüez.  He is also Co-Director of the Puerto Rico Mathematical Olympiads. He received his B.Sc. in Applied Mathematics at the Instituto Tecnológico Autónomo de México (1992) and his M.Sc. (1994) and Ph.D. (1997) at Rensselaer Polytechnic institute. His areas of interest include inverse problems, mathematical modeling, optimization, regularization, math education, and math Olympiads. He also explores the use of technology to increase efficiency, transparency, and consistency in teaching mathematics.