Atnaujinkite slapukų nuostatas

El. knyga: Calculus of Variations on Thin Prestressed Films: Asymptotic Methods in Elasticity

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This monograph considers the analytical and geometrical questions emerging from the study of thin elastic films that exhibit residual stress at free equilibria.  It provides the comprehensive account, the details and background on the most recent results in the combined research perspective on the classical themes: in Differential Geometry – that of isometrically embedding a shape with a given metric in an ambient space of possibly different dimension, and in Calculus of Variations – that of minimizing non-convex energy functionals parametrized by a quantity in whose limit the functionals become degenerate.

Prestressed thin films are present in many contexts and applications, such as: growing tissues, plastically strained sheets, engineered swelling or shrinking gels, petals and leaves of flowers, or atomically thin graphene layers.  While the related questions about the physical basis for shape formation lie at the intersection of biology, chemistry and physics, fundamentally they are of the analytical and geometrical character, and can be tackled using the techniques of the dimension reduction, laid out in this book.

The text will appeal to mathematicians and graduate students working in the fields of Analysis, Calculus of Variations, Partial Differential Equations, and Applied Math.  It will also be of interest to researchers and graduate students in Engineering (especially fields related to Solid Mechanics and Materials Science), who would like to gain the modern mathematical insight and learn the necessary tools.
Introduction.- Part I: Tools in Mathematical Analysis.- -Convergence.-
Korn's Inequality.- Friesecke-James-Müllers Inequality.- Part II: Dimension
Reduction in Classical Elasticity.- Limiting Theories for Elastic Plates and
Shells: Nonlinear Bending.- Limiting Theories for Elastic Plates and Shells:
Sublinear and Linear.- Linear Theories for Elastic Plates: Linearized
Bending.- Infinite Hierarchy of Elastic Shell Models.- Limiting Theories on
Elastic Elliptic Shells.- Limiting Theories on Elastic Developable Shells.-
Part III: Dimension Reduction in Prestressed Elasticity.- Limiting Theories
for Prestressed Films: Nonlinear Bending.- Limiting Theories for Prestressed
Films: Von Kįrmįn-like Theory.- Infinite Hierarchy of Limiting Theories for
Prestressed Films.- Limiting Theories for Weakly Prestressed Films.-
Terminology and Notation.- Index. 
Marta Lewicka is a mathematician specializing in the fields of Analysis and Partial Differential Equations. She has contributed results in the theory of hyperbolic systems of conservation laws, fluid dynamics, calculus of variations, nonlinear potential theory, and differential games. She is a Fellow of the American Mathematical Society and holds Professors scientific title awarded by the President of the Republic of Poland. She works at the University of Pittsburgh, USA.