Atnaujinkite slapukų nuostatas

El. knyga: Cantor Minimal Systems

  • Formatas: 149 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 05-Nov-2018
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470447311
Kitos knygos pagal šią temą:
  • Formatas: 149 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 05-Nov-2018
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470447311
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Within the subject of topological dynamics, there has been considerable recent interest in systems where the underlying topological space is a Cantor set. Such systems have an inherently combinatorial nature, and seminal ideas of Anatoly Vershik allowed for a combinatorial model, called the Bratteli-Vershik model, for such systems with no non-trivial closed invariant subsets. This model led to a construction of an ordered abelian group which is an algebraic invariant of the system providing a complete classification of such systems up to orbit equivalence.

The goal of this book is to give a statement of this classification result and to develop ideas and techniques leading to it. Rather than being a comprehensive treatment of the area, this book is aimed at students and researchers trying to learn about some surprising connections between dynamics and algebra. The only background material needed is a basic course in group theory and a basic course in general topology.
Preface ix
Chapter 1 An example: A tale of two equivalence relations
1(6)
Chapter 2 Basics: Cantor sets and orbit equivalence
7(12)
1 Cantor sets
7(7)
2 Orbit equivalence
14(5)
Chapter 3 Bratteli diagrams: Generalizing the example
19(10)
Chapter 4 The Bratteli-Vershik model: Generalizing the example
29(8)
Chapter 5 The Bratteli-Vershik model: Completeness
37(6)
Chapter 6 Etale equivalence relations: Unifying the examples
43(10)
1 Local actions and etale equivalence relations
44(4)
2 Re as an etale equivalence relation
48(2)
3 Rq as an etale equivalence relation
50(3)
Chapter 7 The D invariant
53(22)
1 The group C(X, Z)
53(2)
2 Ordered abelian groups
55(1)
3 The invariant
56(2)
4 Inductive limits of groups
58(3)
5 The dimension group of a Bratteli diagram
61(7)
6 The invariant for AF-equivalence relations
68(2)
7 The invariant for Z-actions
70(5)
Chapter 8 The Effros-Handelman-Shen Theorem
75(10)
1 The statement
75(3)
2 The proof
78(7)
Chapter 9 The Bratteli-Elliott-Krieger Theorem
85(6)
Chapter 10 Strong orbit equivalence
91(4)
1 Orbit cocycles
91(1)
2 Strong orbit equivalence and classification
92(3)
Chapter 11 The Dm invariant
95(22)
1 An innocent's guide to measure theory
95(4)
2 States on ordered abelian groups
99(3)
3 R-invariant measures
102(1)
4 R-invariant measures and the D invariant
103(1)
5 The invariant
104(5)
6 The invariant for AF-equivalence relations
109(4)
7 The invariant for Z-actions
113(1)
8 The classification of odometers
114(3)
Chapter 12 The absorption theorem
117(12)
1 The simplest version
117(1)
2 The proof
118(8)
3 Matui's absorption theorem
126(3)
Chapter 13 The classification of AF-equivalence relations
129(8)
1 An example
129(4)
2 The classification theorem
133(4)
Chapter 14 The classification of $$-actions
137(2)
Appendix A. Examples 139(6)
Bibliography 145(2)
Index of terminology 147(2)
Index of notation 149
Ian F. Putnam, University of Victoria, BC, Canada.