Foreword |
|
xvii | |
|
Preface |
|
xix | |
List of Figures |
|
xxi | |
List of Tables |
|
xxv | |
Contributors |
|
xxxi | |
I Introduction |
|
1 | (18) |
|
1 Basic concepts of capture-recapture |
|
|
3 | (16) |
|
|
|
Peter G.M. van der Heijden |
|
|
1.1 Introduction and background |
|
|
4 | (1) |
|
|
4 | (6) |
|
1.2.1 Golf tees in St. Andrews |
|
|
4 | (1) |
|
1.2.2 Homeless population of the city of Utrecht |
|
|
5 | (1) |
|
1.2.3 McKendrick's Cholera data |
|
|
6 | (1) |
|
1.2.4 Matthews's data on estimating the Dystrophin density in the human muscle |
|
|
6 | (1) |
|
1.2.5 Del Rio Vilas's data on Scrapie surveillance in Great Britain 2005 |
|
|
6 | (1) |
|
1.2.6 Hser's data on estimating hidden intravenous drug users in Los Angeles 1989 |
|
|
7 | (1) |
|
1.2.7 Methamphetamine drug use in Bangkok 2001 |
|
|
7 | (1) |
|
1.2.8 Chun's data on estimating hidden software errors for the AT&Ts 5ESS switch |
|
|
7 | (1) |
|
1.2.9 Estimating the size of the female grizzly bear population in the Greater Yellowstone Ecosystem |
|
|
8 | (1) |
|
1.2.10 Spinner dolphins around Moorea Island |
|
|
8 | (1) |
|
1.2.11 Microbial diversity in the Gotland Deep |
|
|
8 | (1) |
|
1.2.12 Illegal immigrants in the Netherlands |
|
|
9 | (1) |
|
1.2.13 Shakespeare's unused words |
|
|
10 | (1) |
|
1.3 Estimating population size under homogeneity |
|
|
10 | (2) |
|
1.4 Simple estimates under heterogeneity |
|
|
12 | (1) |
|
1.5 Examples and applications |
|
|
13 | (1) |
|
1.6 Heterogeneity of sources or occasions |
|
|
14 | (2) |
|
1.6.1 Darroch's estimator and Lincoln-Petersen |
|
|
15 | (1) |
|
|
16 | (3) |
II Ratio Regression Models |
|
19 | (60) |
|
2 Ratio regression and capture-recapture |
|
|
21 | (18) |
|
|
|
|
|
21 | (2) |
|
2.2 Individual and aggregated data |
|
|
23 | (2) |
|
|
25 | (1) |
|
2.3.1 Fixed number of sources: The bowel cancer data |
|
|
25 | (1) |
|
2.3.2 Unknown number of sources: The Shakespeare data |
|
|
26 | (1) |
|
|
26 | (6) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.4.4 A specific case: The Beta-binomial distribution |
|
|
31 | (1) |
|
2.5 The regression approach |
|
|
32 | (3) |
|
|
35 | (2) |
|
2.6.1 The bowel cancer data |
|
|
35 | (1) |
|
2.6.2 The Shakespeare data |
|
|
36 | (1) |
|
|
37 | (2) |
|
3 The Conway-Maxwell-Poisson distribution and capture-recapture count data |
|
|
39 | (16) |
|
|
|
|
39 | (1) |
|
3.2 The Conway-Maxwell-Poisson distribution and capture-recapture count data |
|
|
40 | (2) |
|
|
40 | (1) |
|
3.2.2 The CMP distribution |
|
|
41 | (1) |
|
|
42 | (4) |
|
|
42 | (1) |
|
3.3.2 The ratio regression |
|
|
43 | (3) |
|
|
46 | (3) |
|
3.4.1 Approaches based upon resample techniques |
|
|
46 | (1) |
|
3.4.2 An approximation-based approach |
|
|
47 | (1) |
|
3.4.3 Comparing confidence intervals |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
3.5.4 Taxicab data in Edinburgh |
|
|
51 | (1) |
|
|
51 | (4) |
|
4 The geometric distribution, the ratio plot under the null and the burden of dengue fever in Chiang Mai province |
|
|
55 | (6) |
|
|
Veerasak Punyapornwithaya |
|
|
|
55 | (1) |
|
4.2 The case study on dengue fever |
|
|
55 | (1) |
|
4.3 Geometric distribution |
|
|
56 | (1) |
|
|
57 | (2) |
|
4.5 Ratio plot under the null |
|
|
59 | (1) |
|
4.6 Application to estimate the burden of dengue fever |
|
|
60 | (1) |
|
5 A ratio regression approach to estimate the size of the Salmonella- infected flock population using validation information |
|
|
61 | (18) |
|
|
|
|
5.1 Introduction and background |
|
|
61 | (2) |
|
|
63 | (2) |
|
|
64 | (1) |
|
5.3 Ratio plot and ratio regression |
|
|
65 | (5) |
|
5.4 Ratio regression using validation information |
|
|
70 | (2) |
|
5.4.1 Application to the case study |
|
|
72 | (1) |
|
|
72 | (3) |
|
|
75 | (2) |
|
5.6.1 Simulation study on zero-inflated data |
|
|
75 | (2) |
|
5.7 Discussion and conclusions |
|
|
77 | (2) |
III Meta-Analysis in Capture-Recapture |
|
79 | (28) |
|
6 On meta-analysis in capture-recapture |
|
|
81 | (6) |
|
|
6.1 Introduction and background |
|
|
81 | (2) |
|
6.2 Analysis of grizzly bear data |
|
|
83 | (1) |
|
6.3 Comments and future directions |
|
|
84 | (3) |
|
7 A case study on maritime accidents using meta-analysis in capture-recapture |
|
|
87 | (12) |
|
|
|
|
87 | (1) |
|
7.2 The case study on maritime accidents |
|
|
88 | (2) |
|
7.3 Meta-anal34is essentials |
|
|
90 | (1) |
|
7.4 Analysis of maritime accident data |
|
|
91 | (1) |
|
7.5 Comments and future directions |
|
|
91 | (4) |
|
|
95 | (4) |
|
8 A meta-analytic generalization of the Lincoln-Petersen estimator for mark-and-resight studies |
|
|
99 | (8) |
|
|
|
|
|
8.1 What are mark-and-resight studies? |
|
|
99 | (1) |
|
8.2 A case study on stray dogs in South Bhutan |
|
|
100 | (1) |
|
8.3 Meta-analysis and mark-resight studies |
|
|
101 | (1) |
|
8.4 A Mantel-Haenszel estimator for mark-resight studies |
|
|
102 | (2) |
|
|
104 | (2) |
|
|
106 | (1) |
IV Extensions of Single Source Models |
|
107 | (104) |
|
9 Estimating the population size via the empirical probability generating function |
|
|
109 | (12) |
|
|
|
9.1 Introduction and background |
|
|
109 | (1) |
|
9.2 Implementation of the empirical pgf method |
|
|
110 | (4) |
|
9.2.1 Initial values for 0 search |
|
|
111 | (1) |
|
9.2.2 Error estimation for N |
|
|
112 | (1) |
|
9.2.3 Goodness of fit for the empirical pgf procedure |
|
|
113 | (1) |
|
9.3 The Kemp distributions |
|
|
114 | (2) |
|
9.3.1 Approximate maximum likelihood estimates |
|
|
115 | (1) |
|
9.4 Simulations, data analyses, and discussion |
|
|
116 | (5) |
|
|
121 | (20) |
|
|
|
|
|
|
|
121 | (2) |
|
|
121 | (1) |
|
10.1.2 Convex abundance distribution |
|
|
122 | (1) |
|
10.2 Testing the convexity of p+ |
|
|
123 | (4) |
|
10.2.1 The statistical test |
|
|
124 | (1) |
|
|
124 | (3) |
|
10.3 Estimating the number N of species |
|
|
127 | (2) |
|
10.3.1 Identifiability of N |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
10.4 Confidence intervals and standard errors |
|
|
129 | (2) |
|
10.4.1 Estimator based on empirical frequencies |
|
|
129 | (1) |
|
10.4.2 Estimator based on the constraint LSE |
|
|
129 | (2) |
|
|
131 | (3) |
|
|
134 | (7) |
|
10.6.1 Testing convexity of a discrete distribution |
|
|
134 | (3) |
|
10.6.2 Confidence intervals and standard errors |
|
|
137 | (4) |
|
11 Non-parametric estimation of the population size using the empirical probability generating function |
|
|
141 | (14) |
|
|
|
141 | (1) |
|
11.2 The LC-class: A large family of count distributions |
|
|
142 | (2) |
|
11.2.1 Compound-Poisson distributions belong to the LC-class |
|
|
142 | (1) |
|
11.2.2 Mixed-Poisson distributions belong to the LC-class |
|
|
143 | (1) |
|
11.2.3 Other distributions belonging (and not belonging) to the LC-class |
|
|
143 | (1) |
|
11.3 Some lower bounds of po for the LC-class |
|
|
144 | (2) |
|
11.3.1 Example: A two-component Mixed-Poisson distribution |
|
|
145 | (1) |
|
11.3.2 Example: A Hermite distribution |
|
|
145 | (1) |
|
11.4 Estimating a lower bound of the population size |
|
|
146 | (2) |
|
11.5 Examples of application |
|
|
148 | (4) |
|
11.5.1 McKendrick's Cholera data |
|
|
149 | (1) |
|
11.5.2 Abundance of grizzly bears in 1998 and 1999 |
|
|
150 | (1) |
|
|
150 | (2) |
|
|
152 | (3) |
|
12 Extending the truncated Poisson regression model to a time-at-risk model |
|
|
155 | (8) |
|
|
|
Peter G.M. van der Heijden |
|
|
|
155 | (1) |
|
|
156 | (3) |
|
|
156 | (1) |
|
12.2.2 The two-stage ZTPR |
|
|
157 | (1) |
|
12.2.3 The time-at-risk ZTPR |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
160 | (2) |
|
|
162 | (1) |
|
13 Extensions of the Chao estimator for covariate information: Poisson case |
|
|
163 | (28) |
|
|
|
|
163 | (1) |
|
13.2 Generalised Chao estimator K counts and no covariates |
|
|
164 | (2) |
|
13.3 Generalised Chao estimator Poisson case with covariates |
|
|
166 | (5) |
|
|
166 | (1) |
|
13.3.2 Generalised Chao estimator Poisson case: K counts and covariates |
|
|
167 | (2) |
|
13.3.3 Variance estimator for NGc with K non-truncated counts and covariates |
|
|
169 | (2) |
|
|
171 | (11) |
|
13.4.1 Simulation 1: Including unexplained heterogeneity |
|
|
172 | (6) |
|
13.4.2 Simulation 2: Model with misclassification |
|
|
178 | (1) |
|
13.4.3 Simulation 3: Data generated from a negative binomial distribution |
|
|
178 | (4) |
|
13.5 Case study: Carcass submission from animal farms in Great Britain |
|
|
182 | (5) |
|
|
187 | (4) |
|
14 Population size estimation for one-inflated count data based upon the geometric distribution |
|
|
191 | (20) |
|
|
|
14.1 Introduction and background |
|
|
191 | (2) |
|
14.2 The geometric model with truncation |
|
|
193 | (1) |
|
14.3 One-truncated geometric model |
|
|
194 | (3) |
|
14.3.1 One-truncated Turing estimator |
|
|
195 | (1) |
|
14.3.2 One-truncated maximum likelihood estimator |
|
|
196 | (1) |
|
14.4 Zero-truncated one-inflated geometric model |
|
|
197 | (4) |
|
14.4.1 Zero-truncated one-inflated maximum likelihood estimator |
|
|
198 | (3) |
|
|
201 | (3) |
|
|
204 | (5) |
|
14.6.1 Scrapie-infected holdings |
|
|
206 | (1) |
|
14.6.2 Domestic violence incidents in the Netherlands |
|
|
207 | (1) |
|
14.6.3 Illegal immigrants in the Netherlands |
|
|
208 | (1) |
|
|
209 | (2) |
V Multiple Sources |
|
211 | (64) |
|
15 Dual and multiple system estimation: Fully observed and incomplete co- variates |
|
|
213 | (16) |
|
Peter G.M. van der Heijden |
|
|
|
|
|
|
|
213 | (2) |
|
15.2 The population of people with Middle Eastern nationality staying in the Netherlands |
|
|
215 | (2) |
|
15.3 Fully observed covariates |
|
|
217 | (6) |
|
|
217 | (3) |
|
|
220 | (1) |
|
15.3.3 Active and passive covariates |
|
|
221 | (1) |
|
|
222 | (1) |
|
15.4 Incomplete covariates |
|
|
223 | (3) |
|
15.4.1 Active and passive covariates revisited |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
226 | (3) |
|
16 Population size estimation in CRC models with continuous covariates |
|
|
229 | (8) |
|
|
16.1 Introduction and background |
|
|
229 | (1) |
|
16.2 Modeling observed heterogeneity |
|
|
230 | (3) |
|
|
231 | (1) |
|
16.2.2 Classical log-linear model |
|
|
231 | (1) |
|
16.2.3 Multinomial logit model |
|
|
232 | (1) |
|
|
232 | (1) |
|
16.2.5 Multi-model approach |
|
|
233 | (1) |
|
16.2.6 Bootstrap variance and confidence interval estimation |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (2) |
|
17 Trimmed dual system estimation |
|
|
237 | (22) |
|
|
|
|
237 | (3) |
|
17.1.1 Census coverage adjustments |
|
|
238 | (1) |
|
17.1.2 Replacing census with administrative sources |
|
|
239 | (1) |
|
|
240 | (8) |
|
17.2.1 Ideal DSE given erroneous enumeration |
|
|
240 | (1) |
|
|
241 | (2) |
|
|
243 | (2) |
|
17.2.4 Discussion: Erroneous enumeration in both lists |
|
|
245 | (1) |
|
17.2.5 Discussion: Record linkage errors |
|
|
246 | (2) |
|
17.3 Emerging census opportunity: Ireland |
|
|
248 | (11) |
|
|
248 | (1) |
|
17.3.2 Overview of data sources |
|
|
248 | (1) |
|
17.3.3 Underlying assumptions and population concepts |
|
|
249 | (3) |
|
17.3.4 Application of TDSE |
|
|
252 | (3) |
|
17.3.5 Comparisons with census figures |
|
|
255 | (1) |
|
17.3.6 Discussion of future works |
|
|
256 | (3) |
|
18 Estimation of non-registered usual residents in the Netherlands |
|
|
259 | (16) |
|
|
Peter G.M. van der Heijden |
|
|
|
|
259 | (2) |
|
|
261 | (1) |
|
18.3 Meeting the assumptions of the capture-recapture method |
|
|
262 | (2) |
|
18.4 The residence duration |
|
|
264 | (4) |
|
18.5 Capture-recapture estimates |
|
|
268 | (4) |
|
|
272 | (3) |
VI Latent Variable Models |
|
275 | (86) |
|
19 Population size estimation using a categorical latent variable |
|
|
277 | (14) |
|
|
|
19.1 Introduction and background |
|
|
277 | (2) |
|
|
279 | (1) |
|
19.3 Concentration graphical models |
|
|
280 | (1) |
|
19.4 Capture-recapture estimation with graphical log-linear models with observed covariates |
|
|
281 | (1) |
|
19.5 Extended Latent Class models |
|
|
282 | (1) |
|
19.6 Identification of Extended Latent Class models |
|
|
283 | (1) |
|
19.7 Confidence intervals |
|
|
284 | (1) |
|
19.8 Example of models under unobserved heterogeneity |
|
|
285 | (4) |
|
19.8.1 Congenital Anomaly data |
|
|
285 | (1) |
|
19.8.2 Bacterial Meningitis data |
|
|
286 | (3) |
|
|
289 | (2) |
|
20 Latent class: Rasch models and marginal extensions |
|
|
291 | (14) |
|
|
|
20.1 Introduction and background |
|
|
291 | (1) |
|
20.2 Latent class: Rasch models and their extensions |
|
|
292 | (5) |
|
20.2.1 The basic latent class model |
|
|
292 | (1) |
|
|
293 | (1) |
|
20.2.3 Extensions based on marginal log-linear parametrisations |
|
|
294 | (2) |
|
20.2.4 Modelling the effect of covariates |
|
|
296 | (1) |
|
20.3 Likelihood inference |
|
|
297 | (2) |
|
20.3.1 Estimation of the model parameters |
|
|
297 | (1) |
|
20.3.2 Estimation of the population size |
|
|
298 | (1) |
|
|
299 | (4) |
|
20.4.1 Greal Copper Butterfly |
|
|
299 | (2) |
|
20.4.2 Bacterial meningitis |
|
|
301 | (2) |
|
20.5 Appendix: Matrices used in the marginal parametrisation |
|
|
303 | (2) |
|
21 Performance of hierarchical log-linear models for a heterogeneous population with three lists |
|
|
305 | (10) |
|
|
|
|
|
305 | (1) |
|
21.2 Hierarchical log-linear models |
|
|
306 | (2) |
|
21.3 Performance given Rasch mixtures |
|
|
308 | (2) |
|
|
310 | (1) |
|
|
310 | (2) |
|
|
312 | (1) |
|
21.7 Appendix: Proofs of the three theorems |
|
|
312 | (3) |
|
22 A multidimensional Rasch model for multiple system estimation |
|
|
315 | (26) |
|
|
|
Peter G.M. van der Heijden |
|
|
|
315 | (1) |
|
|
316 | (2) |
|
22.3 Estimating population size under the log-linear multidimensional Rasch model |
|
|
318 | (9) |
|
22.3.1 Notation and basic assumptions |
|
|
318 | (1) |
|
|
318 | (5) |
|
22.3.3 Model with a stratifying variable |
|
|
323 | (2) |
|
22.3.4 Assumption of measurement invariance |
|
|
325 | (1) |
|
|
326 | (1) |
|
22.4 MR model and standard log-linear model |
|
|
327 | (2) |
|
22.5 EM algorithm to estimate missing entries |
|
|
329 | (2) |
|
22.6 Application to real data |
|
|
331 | (6) |
|
|
337 | (4) |
|
23 Extending the Lincoln-Petersen estimator when both sources are counts |
|
|
341 | (20) |
|
|
|
|
341 | (2) |
|
23.2 Discrete mixtures of bivariate, conditional independent Poisson distributions |
|
|
343 | (2) |
|
23.3 Maximum likelihood estimation for bivariate zero-truncated Poisson mixtures |
|
|
345 | (2) |
|
23.4 Unconditional MLE via a profile mixture likelihood |
|
|
347 | (5) |
|
23.4.1 Profile likelihood of the homogeneous Poisson model |
|
|
348 | (1) |
|
23.4.2 Profile mixture likelihood of the heterogeneous Poisson model |
|
|
349 | (3) |
|
23.5 Confidence interval estimation for population size N based upon the profile mixture likelihood |
|
|
352 | (2) |
|
|
354 | (1) |
|
|
355 | (2) |
|
|
357 | (4) |
VII Bayesian Approaches |
|
361 | (26) |
|
24 Objective Bayes estimation of the population size using Kemp distributions |
|
|
363 | (8) |
|
|
|
24.1 Introduction and background |
|
|
363 | (1) |
|
24.2 The Kemp family of distributions |
|
|
364 | (1) |
|
24.3 The likelihood function |
|
|
365 | (2) |
|
24.3.1 On maximum likelihood estimation |
|
|
366 | (1) |
|
24.4 Objective Bayes procedures |
|
|
367 | (1) |
|
|
368 | (3) |
|
25 Bayesian population size estimation with censored counts |
|
|
371 | (16) |
|
|
|
|
|
371 | (1) |
|
25.2 Scotland Drug Injectors data set |
|
|
372 | (2) |
|
|
374 | (2) |
|
25.3.1 Log-linear models for possibly truncated counts |
|
|
374 | (1) |
|
25.3.1.1 Unobserved heterogeneity |
|
|
375 | (1) |
|
25.4 Priors and model choice |
|
|
376 | (4) |
|
25.4.1 Prior choices for the population size |
|
|
377 | (1) |
|
|
377 | (2) |
|
25.4.2 Prior choices for the other parameters |
|
|
379 | (1) |
|
|
380 | (1) |
|
|
380 | (2) |
|
|
382 | (1) |
|
|
383 | (1) |
|
25.8 Appendix A: Induced gamma-type priors on N |
|
|
383 | (4) |
VIII Miscellaneous Topics |
|
387 | (10) |
|
26 Uncertainty assessment in capture-recapture studies and the choice of sampling effort |
|
|
389 | (8) |
|
|
|
Peter G.M. van der Heijden |
|
|
26.1 Introduction and background |
|
|
389 | (1) |
|
26.2 Computing variances using conditional moments |
|
|
390 | (1) |
|
26.3 Application to log-linear models |
|
|
391 | (1) |
|
26.4 Bootstrap for capture-recapture |
|
|
392 | (1) |
|
26.5 Choice of sampling effort |
|
|
393 | (1) |
|
26.6 Lincoln-Petersen estimation and sampling effort |
|
|
394 | (3) |
References |
|
397 | (20) |
Index |
|
417 | |