Atnaujinkite slapukų nuostatas

Carbohydrate Recognition: Biological Problems, Methods, and Applications [Kietas viršelis]

Edited by (Georgia State University, Atlanta), Edited by (Complex Carbohydrates Research Center, Athens, Georgia, USA)
  • Formatas: Hardback, 440 pages, aukštis x plotis x storis: 236x155x31 mm, weight: 839 g
  • Serija: Wiley Series in Drug Discovery and Development
  • Išleidimo metai: 12-Aug-2011
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 0470592079
  • ISBN-13: 9780470592076
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 440 pages, aukštis x plotis x storis: 236x155x31 mm, weight: 839 g
  • Serija: Wiley Series in Drug Discovery and Development
  • Išleidimo metai: 12-Aug-2011
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 0470592079
  • ISBN-13: 9780470592076
Kitos knygos pagal šią temą:
Preface vii
Contributors ix
1 Mammalian Glycan Biosynthesis: Building Atemplate For Biological Recognition
1(32)
M. Adam Meledeo
Venkata D. P. Pamchuri
Jian Du
Zhiyun Wang
Kevin J. Yarema
1.1 Introduction and Outline
2(3)
1.2 The Mechanics of Mammalian Glycosylation
5(14)
1.2.1 Glycosylation---A Post-Translational Modification and More
5(1)
1.2.2 Monosaccharides-The Building Blocks for Glycosylation
6(1)
1.2.2.1 Monosaccharides Are Obtained from the Diet and Transported into Cells
6(2)
1.2.2.2 De Novo Synthesis of High-Energy Nucleotide Sugars
8(1)
1.2.2.3 Transport of Nucleotide Sugars into ER/Golgi
8(1)
1.2.3 Glycoconjugate Assembly
9(1)
1.2.4 Glycoproteins
9(1)
1.2.4.1 N-Linked Glycans
9(3)
1.2.4.2 O-Linked Glycans
12(1)
1.2.4.3 O-Glycosylation of Nucleoplasmic Proteins
12(1)
1.2.5 Glycolipids
13(1)
1.2.5.1 Glycosphingolipids
13(3)
1.2.5.2 GPI Anchors
16(1)
1.2.6 Polysaccharides
16(1)
1.2.6.1 Hyaluronan
17(1)
1.2.6.2 Heparin/Heparan Sulfate and Chondroitin/Dermatan Sulfate
18(1)
1.2.6.3 Keratan Sulfate
18(1)
1.3 Methodology---New Technologies Mesh with "Tried and True" Approaches
19(7)
1.3.1 Carbohydrate Complexity Requires Specialized and Highly Sophisticated Methods
19(1)
1.3.2 Advances in Bioinformatics, Analytical Methods, and High Throughput Technologies
20(1)
1.3.2.1 Glycomics---Combining Bioinformatics with Analytical Tools and High Throughput Methods
20(1)
1.3.2.2 Computational Tools and Bioinformatics
20(1)
1.3.3 Chemistry---Renewing Classic Techniques
21(1)
1.3.3.1 Chemistry---A Valuable Contributor to Glycobiology
21(1)
1.3.3.2 Fully Synthetic Glycans
21(1)
1.3.3.3 Synthesis---Toward Diversified Technologies
22(1)
1.3.4 Biological Approaches
22(1)
1.3.4.1 Manipulating Glycans in Living Cells and Animals
22(1)
1.3.4.2 Retooling the Glycosylation Machinery in Cells
23(1)
1.3.4.3 Lectins---An Example of Merging Biology and Technology
23(2)
1.3.5 Metabolites---An "Easy" Way to Manipulate Glycosylation
25(1)
1.3.5.1 Glycosylation can be Altered Through Metabolic Intermediates
25(1)
1.3.5.2 Metabolic Glycoengineering---Biosynthetic Incorporation of Non-Natural Monosaccharide Analogs
25(1)
Acknowledgements
26(1)
References
26(7)
2 The Roles Of Carbohydrate Binding In Cell Adhesion And Inflammation
33(32)
Ken Kitajima
Chihiro Sato
2.1 Introduction
34(1)
2.2 Cell Adhesion and Regeneration of Marine Sponges
35(5)
2.2.1 Ca2+-Independent Species-Specific Binding Between MAF and Cell Receptors
36(1)
2.2.2 Ca2+-Dependent MAF-MAF Self Binding
37(1)
2.2.3 Unique Supramolecular Structure of MAF
38(2)
2.3 Carbohydrate-Mediated Binding in Tight Adhesion at Morula Compaction
40(4)
2.4 Carbohydrate-Mediated Binding in Cell Adhesion and Migration at Gastmlation
44(3)
2.4.1 Membrane Microdomains or Rafts as a Platform of Carbohydrate-Mediated Interactions
44(3)
2.4.2 Membrane Microdomain Hypothesis of Cell Adhesion
47(1)
2.5 Carbohydrate Recognition in Cell Adhesion of the Innate Immune System and Inflammation
47(8)
2.5.1 Carbohydrate Recognition in Cell Adhesion in the Adaptive Immune System
54(1)
2.6 Carbohydrate Recognition in Circulation and Homing of Lymphocytes
55(4)
2.6.1 Recirculation of Naive T lymphocytes Through Lymphoid Organs
57(1)
2.6.2 Lymphocyte Migration from Blood to the Site of Inflammation (Infection)
57(2)
2.7 Conclusions and Future Directions
59(2)
References
61(4)
3 The Role Of Carbohydrates In Viral Infections
65(28)
Gillian M. Air
3.1 Introduction
66(2)
3.2 Influenza Viruses
68(9)
3.2.1 The Influenza Hemagglutinin and Receptor Binding
71(4)
3.2.2 Binding Specificity of Recent Human H3N2 Influenza Viruses
75(1)
3.2.3 The Neuraminidase: Specificity and Function
76(1)
3.3 Parainfluenza Viruses
77(4)
3.3.1 Binding Specificity of Hemagglutinin-Neuraminidase
78(2)
3.3.2 The Neuraminidase Activity of Hemagglutinin-Neuraminidase
80(1)
3.4 Coronaviruses
81(1)
3.5 Polyoma Viruses
82(1)
3.6 Noroviruses Bind to Blood Group Antigen Receptors
83(1)
3.7 Reoviruses
84(1)
3.8 Parvoviruses
85(1)
3.9 Conclusions
86(1)
Acknowledgements
87(1)
References
87(6)
4 The Role Of Carbohydrates In Bacterial Infections
93(14)
Roland J. Pieters
4.1 Introduction
93(2)
4.2 Bacterial Adhesins
95(3)
4.3 Bacterial Toxins
98(2)
4.4 Detection and Characterization of Bacteria by Using Their Adhesin Specificity
100(3)
4.5 Conclusion
103(1)
References
103(4)
5 The Roles Of Carbohydrate Binding In Fertilization
107(26)
David J. Miller
5.1 Introduction
108(1)
5.2 Sea Urchin Fertilization
108(2)
5.3 Slarlish Ferliliznlion
110(1)
5.4 Xawpttx luevis Fertilization
111(2)
5.5 Mammals
113(11)
5.5.1 Potential Role of Oviduct Glycans in Binding Sperm
113(1)
5.5.1.1 Sperm Binding to the Bovine Oviduct
114(1)
5.5.1.2 Sperm Binding to the Porcine Oviduct
115(1)
5.5.2 Sperm Release from the Oviduct Reservoir
115(1)
5.5.3 Mammalian Sperm Binding to Eggs
116(1)
5.5.3.1 Sperm Penetration of the Cumulus Mass
117(1)
5.5.3.2 Sperm Binding to the Zona Pellucida
117(3)
5.5.4 Interpretation of Data that Appear in Conflict
120(1)
5.5.5 Are Zona Pellucida Glycans Required for Fertilization?
121(3)
5.6 Potential for Improved Therapies and Diagnostics
124(1)
5.7 Conclusion and Speculation
124(2)
References
126(7)
6 Carbohydrate Biomarkers
133(24)
Yunfeng Cheng
Nanting Ni
Hanjing Peng
Shan Jin
Binghe Wang
6.1 Introduction
134(1)
6.2 Carbohydrate-Based Biomarkers
134(7)
6.3 Glycosylation Variations in Proteins and Cancer
141(5)
6.3.1 Prostate Specific Antigen
141(1)
6.3.2 Prostatic Acid Phosphatase
142(1)
6.3.3 Human Pancreatic Ribonuclease
143(1)
6.3.4 Fibrinogen
143(1)
6.3.5 Human Chorionic Gonadotropin (hCG)
144(1)
6.3.6 Haptoglobin
145(1)
6.3.7 Alpha-Fetoprotein
145(1)
6.4 Glycolipids and Cancer
146(4)
6.5 Conclusions
150(1)
References
150(7)
7 Galectins And Their Role In Various Biological Processes
157(24)
Sarika Saraswati
Ashley Stanley Block
Alan B. Diekman
7.1 Introduction
158(1)
7.2 Structure
158(1)
7.3 Expression and Tissue Distribution
159(1)
7.4 Nuclear Translocation and Secretion
160(1)
7.5 Roles in Biological Processes
160(9)
7.5.1 Intracellular Functions
161(1)
7.5.1.1 mRNA Splicing
161(1)
7.5.1.2 Cell Growth and Apoptosis
162(1)
7.5.1.3 Cell Cycle Regulation
163(1)
7.5.2 Extracellular Functions
164(1)
7.5.2.1 Cell-Cell and Cell-Extracellular Matrix Adhesion
164(1)
7.5.2.2 Immunomodulation
165(1)
7.5.2.3 Infection
166(1)
7.5.3 Galectins in Cancer
166(1)
7.5.3.1 Altered Expression
166(1)
7.5.3.2 Primary Tumor Progression
167(1)
7.5.3.3 Metastasis and Invasion
168(1)
7.5.3.4 Angiogenesis
168(1)
7.6 Summary
169(1)
References
169(12)
8 Glycoimmunology
181(24)
Ani Grigorian
Barbara Newton
Michael Demetriou
8.1 Introduction
182(1)
8.2 A'-Glycosylation, Galectins, Immunity, and Autoimmunity
182(6)
8.2.1 The Galectin-Glycoprotein Lattice
182(2)
8.2.2 T-Cell Growth and Arrest Signaling
184(1)
8.2.3 Regulation of T-Cell Differentiation
185(1)
8.2.4 Galectins and T-Cell Apoplosis
186(1)
8.2.5 Golgi and Metabolic Regulation of the Galectin-Glycoprotein Lattice
186(1)
8.2.6 Autoimmunity and Inflammatory Disorders
187(1)
8.2.7 Regulation of B-Cell Activation and Differentiation
188(1)
8.3 Siglecs and B Cells
188(2)
8.3.1 Siglecs
188(1)
8.3.2 CD22 and B-Cell Activation Thresholds
189(1)
8.4 Antibody Regulation by A'-Glycosylation
190(1)
8.5 C-Type Lectins and the Innate Immune System
191(1)
8.6 Selectins and Lymphocyte Trafficking
191(2)
8.7 Conclusion
193(1)
Acknowledgements
194(1)
References
194(11)
9 Tools For Glycomics: Glycan And Lectin Microarrays
205(24)
Christopher Campbell
Jeff Gildersleeve
9.1 Introduction
206(1)
9.2 Glycan Array Design, Fabrication, and Processing
207(5)
9.2.1 Glycan Array Fabrication and Design
207(1)
9.2.1.1 Array Platforms
207(1)
9.2.1.2 Immobilization Methods
207(3)
9.2.1.3 Glycan Diversity
210(1)
9.2.1.4 Presentation and Multivalent Binding
210(1)
9.2.2 Evaluation of Binding to Glycan Microarrays
211(1)
9.3 Lectin Microarray Design, Fabrication, and Processing
212(2)
9.3.1 Lectin Microarray Fabrication and Design
212(1)
9.3.1.1 Array Platforms
212(1)
9.3.1.2 Immobilization Methods
212(1)
9.3.1.3 Lectin/CBP Diversity
213(1)
9.3.1.4 Presentation and Multivalent Binding
213(1)
9.3.2 Evaluation and Processing of Binding to Lectin Microarrays
214(1)
9.4 Applications of Glycan Arrays
214(4)
9.4.1 Characterization of Lectin and Antibody Binding Properties
214(1)
9.4.2 Serum Antibody Profiling
214(1)
9.4.2.1 Serum Profiling for Cancer Biomarkers
215(1)
9.4.2.2 Serum Antibody Profiling for Autoimmune Diseases
216(1)
9.4.2.3 Serum Antibody Profiling Identifies Antigens Involved with Rejection of Xenotransplants
216(1)
9.4.2A Serum Antibody Profiling for Diagnosis of Infectious Diseases
217(1)
9.4.2.5 Challenges for Serum Antibody Profiling
217(1)
9.4.3 Antigen Discovery
217(1)
9.4.4 Characterizing Substrate Specificity of Glycosyltransfcrases
218(1)
9.5 Applications of Lectin Arrays
218(1)
9.5.1 Comparing Glycosylation Profiles
218(1)
9.5.2 Characterizing Glycosylation of Recombinant Pharmaceuticals
219(1)
9.6 Future Directions
219(1)
References
219(10)
10 Combinatorial Biosynthesis Of Complex Carbohydrates
229(28)
Hai Yu
Xi Chen
10.1 Introduction
230(1)
10.2 Combinatorial Enzymatic and Chemoenzymatic Synthesis of Glycoconjugates
231(6)
10.2.1 Chemoenzymatic Synthesis of Glycopeptides Using Glycosyltransferases
231(1)
10.2.2 Glycorandomization of Natural Products by Glycosyltransferases
232(3)
10.2.3 Combinatorial Enzymatic Synthesis of Glycoconjugates in Nonaqueous Media
235(2)
10.3 Combinatorial Enzymatic and Chemoenzymatic Synthesis of Oligosaccharides
237(11)
10.3.1 Combinatorial Enzymatic Synthesis of Oligosaccharides
237(1)
10.3.2 Combinatorial Enzymatic Synthesis of Heparan Sulfate and Heparin
238(1)
10.3.3 Enzymatic Synthesis of Carbohydrates by Glycosidases
239(1)
10.3.4 Biosynthesis of Galactosides Using the "Superbeads" Approach
240(1)
10.3.5 Combinatorial Chemoenzymatic Synthesis and High-Throughput Screening of Sialosides
241(1)
10.3.5.1 One-Pot Multi-Enzyme System for Synthesizing Sialosides
242(1)
10.3.5.2 Combinatorial Chemoenzymatic Synthesis of Sialosides
243(1)
10.3.5.3 Biotinylated Sialyltransferase Acceptors
243(1)
10.3.5.4 Sialic Acid Precursors
244(1)
10.3.5.5 Combinatorial Enzymatic Synthesis of Sialosides in Microti ter Plates
244(2)
10.3.5.6 High-Throughput Screening of Sialoside Binding Proteins
246(2)
10.3.5.7 Outlook
248(1)
10.4 Whole Cells as Catalysts for the Synthesis of Oligosaccharides
248(2)
10.5 Generating Homogeneously Modified Bacterial Polysaccharides by Metabolic Pathway Engineering
250(1)
10.6 Conclusion
251(1)
Acknowledgments
251(1)
References
251(6)
11 Mass Spectrometry In Carbohydrate Sequencing And Binding Analysis
257(44)
Gregory O. Staples
Joseph Zaia
11.1 Introduction to Glycobiology
258(8)
11.1.1 Glycosaminoglycan Structure
259(1)
11.1.1.1 Chondroitin/Dermatan Sulfate
259(1)
11.1.1.2 Keratan Sulfate
260(1)
11.1.1.3 Hyaluronan
261(1)
11.1.1.4 Heparan Sulfate
261(1)
11.1.2 Heparan Sulfate Proteoglycans
262(2)
11.1.3 Extraction of GAGs for Structural Analysis
264(1)
11.1.3.1 Release and Purification
264(1)
11.1.3.2 Depolymerization Methods
265(1)
11.1.3.3 Reductive Amination
266(1)
11.2 Techniques for Glycosaminoglycan Analysis
266(3)
11.2.1 Capillary Electrophoresis
266(1)
11.2.2 Chromatographic Techniques
267(1)
11.2.3 Integral Glycan Sequencing
268(1)
11.3 Analysis of Glycosaminoglycans by Mass Spectrometry
269(6)
11.3.1 Mass Spectrometric Instrumentation for GAG Analysis
269(1)
11.3.2 Ionization Methods
269(1)
11.3.3 Mass Spectrometry of Glycosaminoglycans
270(1)
11.3.3.1 Direct Infusion of Glycosaminoglycans
270(1)
11.3.3.2 LC/MS of Glycosaminoglycans
270(1)
11.3.3.3 Reversed-Phase Ion-pairing Chromatography
271(1)
11.3.3.4 Hydrophilic Interaction Chromatography
271(1)
11.3.3.5 Size-Exclusion Chromatography
272(1)
11.3.3.6 Graphitized Carbon Chromatography
272(1)
11.3.4 Tandem Mass Spectrometry of Heparan Sulfates
273(2)
11.4 Structure-Function Biochemistry of Heparan Sulfate
275(8)
11.4.1 Biological Functions of Heparan Sulfates
275(2)
11.4.2 Specificity in Heparan Sulfate-Protein Interactions
277(1)
11.4.3 Extracellular Heparan Sulfate Modifications
278(1)
11.4.3.1 Modification by Heparanase
278(2)
11.4.3.2 Modification by Sulfs
280(2)
11.4.4 Emerging Paradigms for HS Structure-Function Relationships
282(1)
11.5 Determination of Protein Binding Interactions of Heparin and Heparan Sulfate
283(7)
11.5.1 Mass Spectrometiic Analysis of Heparin/Heparan Sulfate Binding to Growth Factors and Chemokine in the Gas Phase
283(4)
11.5.2 Mass Spectrometric Analysis of Heparin/Heparan Sulfate Binding lo Antithrombin in the Gas Phase
287(2)
11.5.3 Mass Spectrometric Analysis of Protein Binding Heparin/Heparan Sulfate Oligosaccharides
289(1)
Acknowledgments
290(1)
References
290(11)
12 Synthetic Lectin Mimics Artificial Carbohydrate Receptors
301(28)
Xiaochuan Yang
Yunfeng (Jerry) Cheng
Binghe Wang
12.1 Introduction
301(2)
12.2 Monoboronic Acid Interactions with Diol- and Hydroxyl-Containing Compounds
303(1)
12.3 Lectin Mimics for Mono- and Oligosaccharide Detections
304(11)
12.4 Lectin Mimics for the Detection of Glycoproteins
315(4)
12.5 Lectin Mimics for Cell Surface Glycan Recognition
319(2)
12.6 Conclusions
321(1)
Acknowledgements
321(1)
References
321(8)
13 Lectin Binding And Its Structural Basis
329(20)
Annabelle Varrot
Bertrand Blanchard
Anne Imberty
13.1 Introduction
330(1)
13.2 Overview of Lectin-Carbohydrate Three-Dimensional Structures
330(4)
13.3 Forces Involved in Binding
334(1)
13.4 Classical Binding Sites: Hydrogen Bonding and van der Waals
335(3)
13.4.1 One Site per Monomer: The Legume Lectins
335(1)
13.4.2 One Site per Interface
335(3)
13.5 Calcium-Bridged Interactions
338(1)
13.6 Structure/Affinity Relationships
339(1)
13.7 Structure-Based Design of High Affinity Glyco-Ligands
340(3)
13.8 Structure-Based Design of Lectin Analogs
343(1)
13.9 Perspectives
344(1)
References
344(5)
14 Multivalency In Carbohydrate Binding
349(22)
Mark L. Wolfenden
J. Mary
Cloninger
14.1 Introduction
350(2)
14.2 Scaffolds
352(9)
14.2.1 Polymers
352(1)
14.2.2 Gold Nanopartlcles
353(1)
14.2.3 Protein-Based Scaffolds
354(1)
14.2.4 Cyclodextrins, Polyrotaxanes, and Calixarenes
355(1)
14.2.5 Dendritic and Large Spherical Structures
356(4)
14.2.6 Self-Assembled Scaffolds
360(1)
14.3 Modeling of Multivalent Systems
361(1)
14.4 Prominent Fundamental Examples
362(2)
14.5 Carbohydrate-Carbohydrate Interactions
364(1)
14.6 Application-Driven Examples
365(2)
14.7 Mediods of Analysis
367(1)
14.8 Summary and Discussion
367(1)
References
368(3)
15 Carbohydrate Binding Agents: Potential Therapeutics With Multiple Inhibitory Actions Against Enveloped Viruses
371(38)
K. O. Francois
J. Balzarini
15.1 Introduction
372(1)
15.2 Enveloped Viruses Shown to Interact with Carbohydrate Binding Agents
373(2)
15.3 Pepliclie Carbohydrate Binding Agents Endowed with Antiviral Activity
375(12)
15.3.1 Carbohydrate Binding Agents from Nonmammalian Origin
375(5)
15.3.2 CBAs from Mammalian Origin
380(1)
15.3.2.1 Galectins
380(1)
15.3.2.2 Siglecs
380(1)
15.3.2.3 C-Type Lectins
381(1)
15.3.2.4 DC-SIGN and L-SIGN
382(1)
15.3.2.5 Langerin
383(1)
15.3.2.6 Macrophage Mannose Receptor (MMR)
384(1)
15.3.2.7 Dendritic Cell lmmunoieceptor
385(1)
15.3.2.8 Mannose Binding Lectin
385(1)
15.3.2.9 Lung Surfactant Proteins SP-D and SP-A
386(1)
15.3.2.10 The Neutralizing Antibody 2G12
386(1)
15.4 (Semi-)Synthetic Small-Size Nonpeptidic Carbohydrate Binding Agents
387(2)
15.5 Carbohydrate Binding Agents: A Novel Concept for Chemotherapy for Viruses Containing a Glycosylated Envelope
389(9)
15.5.1 Interaction of Drugs with the Cellular Glycosylation Pathway
389(2)
15.5.2 Interaction of Drugs with Lectins of the Innate Immune System
391(1)
15.5.3 Direct Interaction of CBA.s with Glycans on the Viral Envelope
391(1)
15.5.3.1 Interaction of CBAs with Different Steps in Virus Infection and Transmission
391(1)
15.5.3.2 CBA Resistance Profile
392(3)
15.5.3.3 Effect of CBAs on Pathogens Other Than HIV
395(1)
15.5.3.4 Microbicide Potential of CBAs
396(1)
15.5.3.5 Commensal Lactobacilli as a Tool for CBA expression
396(1)
15.5.3.6 Interplay Between CBAs and the Innate Immune System
396(2)
15.6 Conclusion
398(1)
Acknowledgments
398(1)
References
398(11)
16 Informatics For Glycobiology And Glycomics
409(18)
F. Kiyoko
Aoki-Kinoshita
16.1 Introduction
410(1)
16.2 Probabilistic Models
410(9)
16.2.1 Background
411(4)
16.2.2 Results
415(4)
16.2.3 Summary
419(1)
16.3 Kernel Methods
419(6)
16.3.1 Background
420(1)
16.3.2 Layered Trimer Kernel
421(1)
16.3.3 q-Gram Distribution Kernel
422(1)
16.3.4 α-Closed Frequent Subtrees
423(1)
16.3.5 Summary
424(1)
16.4 Conclusion
425(1)
References
425(2)
Index 427
BINGHE WANG, PHD, is Professor and Chair of the Department of Chemistry at Georgia State University as well as Georgia Research Alliance Eminent Scholar in Drug Discovery. He is Editor-in-Chief of the journal Medicinal Research Reviews, Series Editor for the Wiley Series in Drug Discovery and Development, and editor of Drug Delivery: Principles and Applications and Chemosensors: Principles, Strategies, and Applications (Wiley).

GEERT-JAN BOONS, PHD, is Franklin Professor of Chemistry and Professor in the Complex Carbohydrate Research Center at the University of Georgia. He is on the editorial boards of several journals on carbohydrates, including European Journal of Chemistry and Journal of Carbohydrate Chemistry, and is also coeditor of Carbohydrate-Based Immunotherapies and Vaccines (Wiley).