Atnaujinkite slapukų nuostatas

El. knyga: Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies

(Tsinghua University, Beijing, Beijing, China), (Tsinghua University, Beijing, Beijing, China), (College of Sciences, Shanghai University, Shanghai, China), (Tsinghua University, Beijing, Beijing, China)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies covers fundamentals, advanced conversion technologies, economic feasibility analysis, and future research directions in the field of CO2 conversion and utilization.

This book emphasizes principles of various conversion technologies for CO2 reduction such as enzymatic conversion, mineralization, thermochemical, photochemical, and electrochemical processes. It addresses materials, components, assembly and manufacturing, degradation mechanisms, challenges, and development strategies. Applications of conversion technologies for CO2 reduction to produce useful fuels and chemicals in energy and industrial systems are discussed as solutions to reduce greenhouse effects and energy shortages. Particularly, the advanced materials and technology of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide cells (SOCs) are reviewed and the introduction, fundamentals, and some significant topics regarding this CO2 conversion process are discussed.

This book provides a comprehensive and clear picture of advanced technologies in CO2 conversion and utilization. Written in a clear and detailed manner, it is suitable for students as well as industry professionals, researchers, and academics.

Preface xi
Acknowledgments xiii
Authors xv
Chapter 1 Introduction to CO2 Reduction through Advanced Conversion and Utilization Technologies
1(8)
1.1 Globe Energy Status, Challenges, and Perspectives
1(1)
1.2 CO2 Emission and Reducing
2(2)
1.3 Main Approaches of CO2 Conversion and Utilization
4(5)
References
6(3)
Chapter 2 Fundamentals of CO2 Structure, Thermodynamics, and Kinetics
9(10)
2.1 Molecular Structure of CO2
9(1)
2.2 Thermodynamics of CO2
9(5)
2.3 Kinetics of CO2 Conversion
14(2)
2.4 Summary
16(3)
References
16(3)
Chapter 3 Enzymatic and Mineralized Conversion Process of CO2 Conversion
19(12)
3.1 Enzymatic Conversion of CO2
19(3)
3.2 Mineralization Process of CO2 Conversion
22(4)
3.3 Summary
26(5)
References
27(4)
Chapter 4 Thermochemical and Photochemical/Photoelectrochemical Conversion Process of CO2 Conversion
31(18)
4.1 Thermochemical Process of CO2 Conversion
31(7)
4.1.1 CO2 Hydrogenation to CH,OH
31(2)
4.1.2 CO2 Hydrogenation to HCOOH
33(2)
4.1.3 CO2 (Dry) Reforming of Methane (DRM)
35(3)
4.2 Photocatalytic and Photoelectrochemical Processes of CO2 Conversion
38(4)
4.3 Summary
42(7)
References
42(7)
Chapter 5 Low-Temperature Electrochemical Process of CO2 Conversion
49(8)
5.1 Brief Introduction to the Electrochemical Process of CO2 Conversion
49(1)
5.2 Thermodynamics of Low-Temperature Electrochemical Process
49(2)
5.3 Electrolyzer Used in Low-Temperature Electrochemical Process
51(1)
5.4 Catalyst/Electrode Used in Low-Temperature Electrochemical Process
51(4)
5.5 Summary and Outlook
55(2)
References
55(2)
Chapter 6 High-Temperature Electrochemical Process of CO2 Conversion with SOCs 1: Introduction and Fundamentals
57(14)
6.1 Introduction of Solid Oxide Cells (SOCs)
57(1)
6.2 Fundamentals of High-Temperature CO2 Conversion through Electrochemical Approaches
58(9)
6.2.1 Thermodynamics of High-Temperature CO2/H2O Co-electrolysis
58(4)
6.2.2 Kinetics of High-Temperature CO2/H2O Co-electrolysis
62(2)
6.2.3 Comparisons between Water Electrolysis, CO2 Electrolysis, and H20/CO2 Co-electrolysis
64(1)
6.2.4 Key Material Selection and Components of SOCs
64(3)
6.3 Summary
67(4)
References
67(4)
Chapter 7 High-Temperature Electrochemical Process of CO2 Conversion with SOCs 2: Research Status
71(42)
7.1 Brief History
71(3)
7.2 Research Status of HTCE with SOC in the United States
74(12)
7.3 HTCE Research towards Sustainable Hydrocarbon Fuels in Europe
86(12)
7.4 Research Status of HTCE with SOC in China
98(5)
7.5 Summary
103(10)
References
103(10)
Chapter 8 High-Temperature Electrochemical Process of CO2 Conversion with SOCs 3: Key Materials
113(26)
8.1 Materials and Microstructures of Electrodes
113(1)
8.2 Fuel Electrode Materials
114(5)
8.3 Oxygen Electrode Materials
119(9)
8.3.1 Reaction Mechanism of Oxygen Electrode Process
119(1)
8.3.2 Mixed Ionic and Electronic Materials
120(1)
8.3.2.1 Perovskites (AB03±δ)
120(2)
8.3.2.2 Double Perovskites (AA'B2O6-δ)
122(2)
8.3.2.3 Ruddlesden-Popper (A2BO4+8)
124(3)
8.3.3 Main Issues of the Oxygen Electrode
127(1)
8.4 Electrolyte
128(1)
8.5 Interconnect Materials
129(1)
8.6 Cell Sealing Materials
130(1)
8.7 Summary
131(8)
References
132(7)
Chapter 9 High-Temperature Electrochemical Process of CO2 Conversion with SOCs 4: Measurement, Characterization, and Simulation
139(16)
9.1 Electrochemical Measurement
139(2)
9.2 Microstructure Characterization
141(4)
9.2.1 SEM, TEM, and STEM
141(1)
9.2.2 FIB-SEM and XCT
142(2)
9.2.3 STM/STS and AFM
144(1)
9.3 Surface Analysis
145(3)
9.4 Simulation and Calculation Method
148(1)
9.5 Product Analysis
149(1)
9.6 Summary
150(5)
References
150(5)
Chapter 10 High-Temperature Electrochemical Process of CO2 Conversion with SOCs 5: Advanced Fabrication Methods (Infiltration and Freeze Casting)
155(32)
10.1 Infiltration for Nano-Structured Ln1-xSrxMO3-δ (Ln=La, Sm; B=Mn, Co, Fe) SOC Electrode
155(12)
10.1.1 Introduction of Infiltration Used in SOCs
155(1)
10.1.2 Process of Infiltration
156(1)
10.1.3 Infiltration with Various Ln1-xSrxMO3-δ SOC Electrodes
157(1)
10.1.3.1 LSM-YSZ Electrode
157(3)
10.1.3.2 LSC-YSZ Electrode
160(1)
10.1.3.3 LSF-YSZ Electrode
161(2)
10.1.3.4 LSCF-YSZ Electrode
163(1)
10.1.3.5 SSC-Infiltrated Electrodes
164(1)
10.1.3.6 Comparison of Infiltrated Electrodes' Performance
165(2)
10.1.4 Conclusions and Future Prospects
167(1)
10.2 An Electrolyte-Electrode Interface Structure with Directional Micro-Channel Fabricated by Freeze Casting
167(20)
10.2.1 Freeze Casting Technology Used in SOCs
167(1)
10.2.2 The Process and Critical Factors of Freeze Casting Technology
168(1)
10.2.2.1 The Process of Freeze Casting
168(1)
10.2.2.2 Effect of Critical Factors on Morphologies
169(6)
10.2.3 Summary and Perspectives
175(2)
References
177(10)
Chapter 11 High-Temperature Electrochemical Process of CO2 Conversion with SOCs 6: Advanced Structure (Heterostructure)
187(16)
11.1 Brief Introduction for Heterostructure
187(2)
11.2 Heterostructure of ABO3/A2BO4 in SOCs
189(3)
11.3 Mechanism of ORR/OER in ABO3/A2BO4 Heterostructure
192(4)
11.3.1 Electronic Structure
192(2)
11.3.2 Anisotropy
194(1)
11.3.3 Lattice Strain (or the Mismatch in Lattice Parameter)
194(1)
11.3.4 Cation Inter-diffusion
195(1)
11.4 Current Challenges for ABO3/A2BO4 Heterostructure
196(7)
11.4.1 Barriers to Accurately Detecting the Performance of a Heterointerface
197(1)
11.4.2 Invisibility of Heterointerface and its Unclear Mechanism
197(1)
11.4.3 The Gap Between Theoretical Investigation and Practical Application
198(1)
References
198(5)
Chapter 12 High-Temperature Electrochemical Process of CO2 Conversion with SOCs 7: The Significant Phenomenon of Cation Segregation
203(56)
12.1 Introduction of Cation Segregation in Perovskite-Based SOC Electrodes
203(1)
12.2 Characterization of Surface Segregation
204(17)
12.2.1 Low-Energy Ion Scattering
205(2)
12.2.2 Auger Electron Spectroscopy and Scanning Electron Microscope
207(2)
12.2.3 X-Ray Photoelectron Spectroscopy
209(1)
12.2.4 Scanning Transmission Electron Microscope and Energy-Dispersive X-Ray Spectroscopy
210(1)
12.2.5 Secondary Ion Mass Spectroscopy
211(1)
12.2.6 Atomic Force Microscope and Scanning Tunneling Microscope
211(3)
12.2.7 X-Ray Diffraction
214(1)
12.2.8 State-of-the-Art Characterization Methods for Surface Segregation
215(1)
12.2.8.1 In Situ XPS
215(1)
12.2.8.2 Environmental Transmission Electron Microscopy
216(1)
12.2.8.3 In Situ SIMS
217(1)
12.2.8.4 Resonant Soft X-Ray Reflectivity and Resonant Anomalous X-Ray Reflectivity
218(1)
12.2.8.5 Raman Spectroscopy and In Situ Raman Spectroscopy
218(1)
12.2.8.6 In Situ X-Ray Fluorescence
219(2)
12.3 Factors Influencing Segregation Level in Perovskite-Based Oxides
221(8)
12.3.1 The Effect of Cation Non-Stoichiometry
221(2)
12.3.2 The Effect of the Cation Species
223(1)
12.3.3 The Effect of Crystallinity
224(1)
12.3.4 The Effect of Lattice Strain
225(1)
12.3.5 The Effect of Temperature and Thermal History
225(2)
12.3.6 The Effect of Atmosphere
227(1)
12.3.7 The Effect of Electrical Polarization
228(1)
12.4 Influences of Cation Segregation on Electrochemical Activity of SOC Electrodes
229(10)
12.4.1 Influence of Sr Segregation
230(1)
12.4.1.1 Mechanism 1: Blocking Effects
231(3)
12.4.1.2 Mechanism 2: Inducing Detrimental Side Reactions
234(1)
12.4.1.3 Mechanism 3: Generating Active Phases
235(1)
12.4.2 A-Site Segregation on Sr-Free Electrode Materials
236(2)
12.4.3 Influence of B-Site Segregation
238(1)
12.5 Surface Engineering Promotes ORR/OER Activity for Perovskite Electrodes
239(7)
12.5.1 Surface Decoration with Alkaline Earth Metal Oxides
240(1)
12.5.2 Surface Decoration of Transition Metal Cations
240(2)
12.5.3 Surface Decoration by Secondary Perovskite-Based Phase
242(3)
12.5.4 Surface Decoration by Less Activated Phase
245(1)
12.6 Conclusion and Outlook
246(13)
References
247(12)
Chapter 13 High-Temperature Electrochemical Process of CO2 Conversion with SOCs 8: Cell and Stack Design, Fabrication, and Scale-Up
259(16)
13.1 SOEC Component/Cell/Stack Structure, Fabrication, and Scale-Up
259(11)
13.1.1 Component/Cell/Stack Structure
259(6)
13.1.2 Fabrication
265(1)
13.1.2.1 Particulate Method
265(1)
13.1.2.2 Deposition Method
266(1)
13.1.3 Scale-Up
266(4)
13.2 SOEC Systems
270(5)
13.2.1 System Management
270(1)
13.2.2 Lab-Scale SOEC Systems
270(2)
References
272(3)
Chapter 14 High-Temperature Electrochemical Process of CO2 Conversion with SOCs 9: Degradation Issues
275(12)
14.1 Delamination of Oxygen Electrode
275(3)
14.2 Cr Poisoning of the Oxygen Electrode
278(1)
14.3 SiO2 Poisoning of the Fuel Electrode
279(2)
14.4 Redox Stability of the Fuel Electrode
281(6)
References
282(5)
Chapter 15 Economic Analysis of CO2 Conversion to Useful Fuels/Chemicals
287(10)
15.1 Methanol
289(2)
15.2 Urea
291(1)
15.3 Dimethyl Carbonate (DMC)
291(1)
15.4 Formic Acid
292(2)
15.5 Syngas (CO+H2)
294(1)
15.6 Summary
295(2)
References
295(2)
Chapter 16 Summary and Possible Research Directions for CO2 Conversion Technologies
297(4)
References
299(2)
Index 301
Yun Zheng, Bo Yu, Jianchen Wang, Jiujun Zhang