Atnaujinkite slapukų nuostatas

El. knyga: Case-Based Reasoning Research and Development: 30th International Conference, ICCBR 2022, Nancy, France, September 12-15, 2022, Proceedings

Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the proceedings of the 30th International Conference on Case-Based Reasoning, ICCBR 2022, which took place in Nancy, France, during September 12-15, 2022.

The theme of ICCBR 2022 was Global Challenges for CBR aiming to consider how CBR can and might contribute to challenges in sustainability, climate change, and global health. The 26 papers presented in this volume were carefully reviewed and selected from 68 submissions. They deal with AI and related research focusing on comparison and integration of CBR with other AI methods such as deep learning architectures, reinforcement learning, lifelong learning, and eXplainable AI (XAI).

Explainability in CBR Using Case-based Reasoning for Capturing Expert
Knowledge on Explanation Methods.- A Few Good Counterfactuals: Generating
Interpretable, Plausible and Diverse Counterfactual Explanations.- How close
is too close? The Role of Feature Attributions in Discovering Counterfactual
Explanations.- Algorithmic Bias and Fairness in Case-Based Reasoning.-
Better Counterfactuals, Ones People Can Understand:
Psychologically-Plausible Case-Based Counterfactuals Using Categorical
Features for Explainable AI (XAI).- Representation and Similarity Extracting
Case Indices from Convolutional Neural Networks: A Comparative Study.-
Exploring the Effect of Recipe Representation on Critique-based
Conversational Recommendation.- Explaining CBR Systems Through Retrieval and
Similarity Measure Visualizations: A Case Study.- Adapting Semantic
Similarity Methods for Case-Based Reasoning in the Cloud.- Adaptation and
Analogical Reasoning Case Adaptation with Neural Networks: Capabilities
andLimitations.- A Deep Learning Approach to Solving Morphological
Analogies.- Theoretical and Experimental Study of a Complexity Measure for
Analogical Transfer.- Graphs and Optimisation Case-Based Learning and
Reasoning Using Layered Boundary Multigraphs.- swarm optimization in small
case bases for software effort estimation.- MicroCBR: Case-based Reasoning on
Spatio-temporal Fault Knowledge Graph for Microservices Troubleshooting.-
GPU-Based Graph Matching for Accelerating Similarity Assessment in
Process-Oriented Case-Based Reasoning.- Never judge a case by its
(unreliable) neighbors: Estimating Case Reliability for CBR.- CBR and Neural
Networks Improving Automated Hyperparameter Optimization with Case-Based
Reasoning.- A factorial study of neural network learning from differences for
regression.- ase-Based Inverse Reinforcement Learning Using Temporal
Coherence.- Analogy-based post-treatment of CNN image segmentations.-
Case-Based Applications An Extended Case-Based Reasoning Approach to
Race-Time Prediction in Recreational Marathon Runners.- Forecasting for
Sustainable Dairy Produce: Enhanced Long-Term, Milk-Supply Forecasting Using
k-NN for Data Augmentation, with Prefactual Explanations for XAI.- A
Case-Based Approach for Content Planning in Data-to-Text Generation.- The use
of computer-assisted Case-Based Reasoning to support clinical decision-making
a scoping review.