Atnaujinkite slapukų nuostatas

El. knyga: Categories for Quantum Theory: An Introduction

4.00/5 (15 ratings by Goodreads)
(Royal Society University Research Fellow, University of Birmingham), (Reader, University of Edinburgh)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Monoidal category theory serves as a powerful framework for describing logical aspects of quantum theory, giving an abstract language for parallel and sequential composition, and a conceptual way to understand many high-level quantum phenomena. This text lays the foundation for this categorical quantum mechanics, with an emphasis on the graphical calculus which makes computation intuitive. Biproducts and dual objects are introduced and used to model superposition and entanglement, with quantum teleportation studied abstractly using these structures. Monoids, Frobenius structures and Hopf algebras are described, and it is shown how they can be used to model classical information and complementary observables. The CP construction, a categorical tool to describe probabilistic quantum systems, is also investigated. The last chapter introduces higher categories, surface diagrams and 2-Hilbert spaces, and shows how the language of duality in monoidal 2-categories can be used to reason about quantum protocols, including quantum teleportation and dense coding.

Prior knowledge of linear algebra, quantum information or category theory would give an ideal background for studying this text, but it is not assumed, with essential background material given in a self-contained introductory chapter. Throughout the text links with many other areas are highlighted, such as representation theory, topology, quantum algebra, knot theory, and probability theory, and nonstandard models are presented, such as sets and relations. All results are stated rigorously, and full proofs are given as far as possible, making this book an invaluable reference for modern techniques in quantum logic, with much of the material not available in any other textbook.
0 Basics
1(28)
0.1 Category Theory
1(12)
0.2 Hilbert Spaces
13(7)
0.3 Quantum Information
20(9)
1 Monoidal Categories
29(32)
1.1 Monoidal Structure
29(11)
1.2 Braiding and Symmetry
40(5)
1.3 Coherence
45(16)
Exercises
53(8)
2 Linear Structure
61(28)
2.1 Scalars
61(3)
2.2 Superposition
64(9)
2.3 Daggers
73(8)
2.4 Measurement
81(8)
Exercises
85(4)
3 Dual Objects
89(38)
3.1 Dual Objects
89(10)
3.2 Teleportation
99(3)
3.3 Interaction with Linear Structure
102(5)
3.4 Pivotality
107(20)
Exercises
122(5)
4 Monoids and Comonoids
127(20)
4.1 Monoids and Comonoids
127(7)
4.2 Uniform Copying and Deleting
134(7)
4.3 Products
141(6)
Exercises
142(5)
5 Frobenius Structures
147(46)
5.1 Frobenius Structures
147(10)
5.2 Normal Forms
157(4)
5.3 Justifying the Frobenius Law
161(5)
5.4 Classification
166(9)
5.5 Phases
175(6)
5.6 Modules
181(12)
Exercises
190(3)
6 Complementarity
193(32)
6.1 Complementary Structures
194(7)
6.2 The Deutsch-Jozsa Algorithm
201(4)
6.3 Bialgebras
205(7)
6.4 Qubit Gates
212(7)
6.5 ZX Calculus
219(6)
Exercises
221(4)
7 Complete Positivity
225(40)
7.1 Completely Positive Maps
225(6)
7.2 Categories of Completely Positive Maps
231(10)
7.3 Classical Structures
241(3)
7.4 Quantum Structures
244(5)
7.5 Decoherence
249(8)
7.6 Interaction with Linear Structure
257(8)
Exercises
260(5)
8 Monoidal 2-Categories
265(48)
8.1 Monoidal 2-Categories
265(19)
8.2 2-Hilbert Spaces
284(16)
8.3 Quantum Procedures
300(13)
Exercises
310(3)
References 313(8)
Index 321
Chris Heunen started his undergraduate studies at the University of Nijmegen, where he received MSc degrees in both Computer Science and Mathematics, and in 2009 a PhD degree. He then did postdoctoral research at the University of Oxford and the California Institute of Technology. His work was awarded the 2012 Birkhoff-von Neumann prize for research on quantum structures. In 2015 he joined the University of Edinburgh.



Jamie Vicary did an undergraduate degree in Physics in Oxford, followed by the Part III Mathematics course in Cambridge. He did a PhD in category theory and quantum information with Christopher Isham at Imperial College London, which was awarded in 2009. Since that time he has done research into the mathematical foundations of quantum computation, with positions in Oxford, Singapore and Birmingham.