Atnaujinkite slapukų nuostatas

Cauchy Problem in General Relativity [Minkštas viršelis]

  • Formatas: Paperback / softback, 307 pages, aukštis x plotis x storis: 240x170x11 mm, weight: 596 g
  • Serija: ESI Lectures in Mathematics & Physics
  • Išleidimo metai: 08-Jun-2009
  • Leidėjas: European Mathematical Society
  • ISBN-10: 3037190531
  • ISBN-13: 9783037190531
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 307 pages, aukštis x plotis x storis: 240x170x11 mm, weight: 596 g
  • Serija: ESI Lectures in Mathematics & Physics
  • Išleidimo metai: 08-Jun-2009
  • Leidėjas: European Mathematical Society
  • ISBN-10: 3037190531
  • ISBN-13: 9783037190531
Kitos knygos pagal šią temą:
Preface vii
Introduction
1(5)
Historical overview
1(1)
Some global results, recent developments
2(1)
Purpose
3(3)
Outline
6(13)
PDE theory
6(6)
The Fourier transform and Sobolev spaces
8(1)
Symmetric hyperbolic systems
9(1)
Linear and non-linear wave equations
10(2)
Geometry, global hyperbolicity and uniqueness
12(2)
Geometry and global hyperbolicity
12(1)
Uniqueness
13(1)
General relativity
14(3)
Constraint equations and local existence
15(2)
Cauchy stability
17(1)
Existence of a maximal globally hyperbolic development
17(1)
Pathologies, strong cosmic censorship
17(2)
Part I Background from the theory of partial differential equations
19(74)
Functional analysis
21(5)
Measurability
21(1)
Dualities
22(4)
The Fourier transform
26(7)
Schwartz functions, the Fourier transform
27(2)
The Fourier inversion formula
29(4)
Sobolev spaces
33(12)
Mollifiers
34(1)
Weak differentiability, Wk, p spaces
35(3)
Temperate distributions, Hs spaces
38(5)
Dualities
43(2)
Sobolev embedding
45(12)
Basic inequalities
47(2)
Sobolev embedding
49(1)
Gagliardo-Nirenberg inequalities
50(7)
Symmetric hyperbolic systems
57(12)
Gronwall's lemma
57(1)
The basic energy inequality
58(5)
Uniqueness
63(1)
Existence
64(5)
Linear wave equations
69(7)
Linear algebra
71(2)
Existence of solutions to linear wave equations
73(3)
Local existence, non-linear wave equations
76(17)
Terminology
76(3)
Preliminaries
79(4)
Local existence
83(4)
Continuation criterion, smooth solutions
87(2)
Stability
89(4)
Part II Background in geometry, global hyperbolicity and uniqueness
93(52)
Basic Lorentz geometry
95(16)
Manifolds
95(5)
Lorentz geometry
100(11)
Lorentz metrics
100(1)
Covariant differentiation
101(4)
Coordinate expressions for curvature
105(2)
Basic causality concepts
107(1)
Geodesics
108(1)
Global hyperbolicity
108(1)
Cauchy surfaces
109(1)
Technical observations
109(2)
Characterizations of global hyperbolicity
111(20)
Existence of a Cauchy hypersurface
111(6)
Basic constructions
117(3)
Smooth time functions
120(4)
Smooth temporal functions adapted to Cauchy hypersurfaces
124(4)
Auxiliary observations
128(3)
Uniqueness of solutions to linear wave equations
131(14)
Preliminary technical observations
131(4)
Uniqueness of solutions to tensor wave equations
135(6)
Existence
141(4)
Part III General relativity
145(40)
The constraint equations
147(5)
Introduction, equations
147(2)
The constraint equations
149(2)
Constraint equations, non-linear scalar field case
151(1)
Local existence
152(12)
Gauge choice
152(2)
Initial data
154(2)
Existence of a globally hyperbolic development
156(2)
Two developments are extensions of a common development
158(6)
Cauchy stability
164(12)
Sobolev spaces on manifolds
164(2)
Background solutions
166(1)
Cauchy stability in general relativity
167(9)
Existence of a maximal globally hyperbolic development
176(9)
Background from set theory
176(1)
Existence of a maximal globally hyperbolic development
177(8)
Part IV Pathologies, strong cosmic censorship
185(80)
Preliminaries
187(9)
Purpose
187(1)
Strong cosmic censorship
188(4)
The asymptotically flat case
189(1)
The cosmological case
189(2)
Genericity
191(1)
Construction of extensions in the unimodular case
192(1)
Sketch of the proof of existence of inequivalent extensions
193(1)
Outline
194(2)
Constant mean curvature
196(10)
Calculus of variations
196(4)
Constant mean curvature hypersurfaces
200(3)
Conditions ensuring maximality
203(1)
Conditions ensuring inextendibility
204(2)
Initial data
206(7)
Unimodular Lie groups
206(3)
Curvature
209(1)
The constraint equations
210(3)
Einstein's vacuum equations
213(12)
Model metrics
213(1)
Constructing a spacetime
214(4)
Elementary properties of developments
218(3)
Causal geodesic completeness and incompleteness
221(4)
Closed universe recollapse
225(7)
Recollapse for an open set of initial data
230(2)
Asymptotic behaviour
232(11)
The Wainwright-Hsu variables
233(1)
Relation between the time coordinates
234(1)
Terminology, asymptotic behaviour
235(1)
Criteria ensuring curvature blow up
236(1)
Limit characterization of the Taub solutions
236(2)
Asymptotic behaviour, Bianchi type I and II
238(1)
Type VI0 solutions
239(1)
Type VII0 solutions
240(1)
Bianchi type VIII and IX
241(1)
Curvature blow up
242(1)
LRS Bianchi class A solutions
243(9)
Bianchi type I
243(2)
Bianchi VII0
245(1)
Bianchi type VI0
246(1)
Bianchi type II, VIII and IX
247(5)
Existence of extensions
252(8)
Construction of an embedding
252(2)
Basic properties of the extensions
254(4)
SCC, unimodular vacuum case
258(2)
Existence of inequivalent extensions
260(5)
Part V Appendices
265(20)
Appendix A
267(10)
Conventions
267(1)
Different notions of measurability
268(2)
Separability
270(1)
Measurability
271(1)
Hilbert spaces
272(1)
Smooth functions with compact support
273(2)
Differentiability in the infinite dimensional case
275(2)
Appendix B
277(8)
Identities concerning permutation symbols
277(2)
Proof of Lemma 20.1
279(1)
Connection coefficients
279(1)
Commutators
280(1)
Ricci curvature
280(1)
Proof of Lemma 20.2
281(1)
Proof of Lemma 22.7
282(3)
Bibliography 285(6)
Index 291