Preface |
|
vii | |
|
|
1 | (5) |
|
|
1 | (1) |
|
Some global results, recent developments |
|
|
2 | (1) |
|
|
3 | (3) |
|
|
6 | (13) |
|
|
6 | (6) |
|
The Fourier transform and Sobolev spaces |
|
|
8 | (1) |
|
Symmetric hyperbolic systems |
|
|
9 | (1) |
|
Linear and non-linear wave equations |
|
|
10 | (2) |
|
Geometry, global hyperbolicity and uniqueness |
|
|
12 | (2) |
|
Geometry and global hyperbolicity |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (3) |
|
Constraint equations and local existence |
|
|
15 | (2) |
|
|
17 | (1) |
|
Existence of a maximal globally hyperbolic development |
|
|
17 | (1) |
|
Pathologies, strong cosmic censorship |
|
|
17 | (2) |
|
Part I Background from the theory of partial differential equations |
|
|
19 | (74) |
|
|
21 | (5) |
|
|
21 | (1) |
|
|
22 | (4) |
|
|
26 | (7) |
|
Schwartz functions, the Fourier transform |
|
|
27 | (2) |
|
The Fourier inversion formula |
|
|
29 | (4) |
|
|
33 | (12) |
|
|
34 | (1) |
|
Weak differentiability, Wk, p spaces |
|
|
35 | (3) |
|
Temperate distributions, Hs spaces |
|
|
38 | (5) |
|
|
43 | (2) |
|
|
45 | (12) |
|
|
47 | (2) |
|
|
49 | (1) |
|
Gagliardo-Nirenberg inequalities |
|
|
50 | (7) |
|
Symmetric hyperbolic systems |
|
|
57 | (12) |
|
|
57 | (1) |
|
The basic energy inequality |
|
|
58 | (5) |
|
|
63 | (1) |
|
|
64 | (5) |
|
|
69 | (7) |
|
|
71 | (2) |
|
Existence of solutions to linear wave equations |
|
|
73 | (3) |
|
Local existence, non-linear wave equations |
|
|
76 | (17) |
|
|
76 | (3) |
|
|
79 | (4) |
|
|
83 | (4) |
|
Continuation criterion, smooth solutions |
|
|
87 | (2) |
|
|
89 | (4) |
|
Part II Background in geometry, global hyperbolicity and uniqueness |
|
|
93 | (52) |
|
|
95 | (16) |
|
|
95 | (5) |
|
|
100 | (11) |
|
|
100 | (1) |
|
Covariant differentiation |
|
|
101 | (4) |
|
Coordinate expressions for curvature |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
109 | (2) |
|
Characterizations of global hyperbolicity |
|
|
111 | (20) |
|
Existence of a Cauchy hypersurface |
|
|
111 | (6) |
|
|
117 | (3) |
|
|
120 | (4) |
|
Smooth temporal functions adapted to Cauchy hypersurfaces |
|
|
124 | (4) |
|
|
128 | (3) |
|
Uniqueness of solutions to linear wave equations |
|
|
131 | (14) |
|
Preliminary technical observations |
|
|
131 | (4) |
|
Uniqueness of solutions to tensor wave equations |
|
|
135 | (6) |
|
|
141 | (4) |
|
Part III General relativity |
|
|
145 | (40) |
|
|
147 | (5) |
|
|
147 | (2) |
|
|
149 | (2) |
|
Constraint equations, non-linear scalar field case |
|
|
151 | (1) |
|
|
152 | (12) |
|
|
152 | (2) |
|
|
154 | (2) |
|
Existence of a globally hyperbolic development |
|
|
156 | (2) |
|
Two developments are extensions of a common development |
|
|
158 | (6) |
|
|
164 | (12) |
|
Sobolev spaces on manifolds |
|
|
164 | (2) |
|
|
166 | (1) |
|
Cauchy stability in general relativity |
|
|
167 | (9) |
|
Existence of a maximal globally hyperbolic development |
|
|
176 | (9) |
|
Background from set theory |
|
|
176 | (1) |
|
Existence of a maximal globally hyperbolic development |
|
|
177 | (8) |
|
Part IV Pathologies, strong cosmic censorship |
|
|
185 | (80) |
|
|
187 | (9) |
|
|
187 | (1) |
|
|
188 | (4) |
|
The asymptotically flat case |
|
|
189 | (1) |
|
|
189 | (2) |
|
|
191 | (1) |
|
Construction of extensions in the unimodular case |
|
|
192 | (1) |
|
Sketch of the proof of existence of inequivalent extensions |
|
|
193 | (1) |
|
|
194 | (2) |
|
|
196 | (10) |
|
|
196 | (4) |
|
Constant mean curvature hypersurfaces |
|
|
200 | (3) |
|
Conditions ensuring maximality |
|
|
203 | (1) |
|
Conditions ensuring inextendibility |
|
|
204 | (2) |
|
|
206 | (7) |
|
|
206 | (3) |
|
|
209 | (1) |
|
|
210 | (3) |
|
Einstein's vacuum equations |
|
|
213 | (12) |
|
|
213 | (1) |
|
|
214 | (4) |
|
Elementary properties of developments |
|
|
218 | (3) |
|
Causal geodesic completeness and incompleteness |
|
|
221 | (4) |
|
Closed universe recollapse |
|
|
225 | (7) |
|
Recollapse for an open set of initial data |
|
|
230 | (2) |
|
|
232 | (11) |
|
The Wainwright-Hsu variables |
|
|
233 | (1) |
|
Relation between the time coordinates |
|
|
234 | (1) |
|
Terminology, asymptotic behaviour |
|
|
235 | (1) |
|
Criteria ensuring curvature blow up |
|
|
236 | (1) |
|
Limit characterization of the Taub solutions |
|
|
236 | (2) |
|
Asymptotic behaviour, Bianchi type I and II |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
242 | (1) |
|
LRS Bianchi class A solutions |
|
|
243 | (9) |
|
|
243 | (2) |
|
|
245 | (1) |
|
|
246 | (1) |
|
Bianchi type II, VIII and IX |
|
|
247 | (5) |
|
|
252 | (8) |
|
Construction of an embedding |
|
|
252 | (2) |
|
Basic properties of the extensions |
|
|
254 | (4) |
|
SCC, unimodular vacuum case |
|
|
258 | (2) |
|
Existence of inequivalent extensions |
|
|
260 | (5) |
|
|
265 | (20) |
|
|
267 | (10) |
|
|
267 | (1) |
|
Different notions of measurability |
|
|
268 | (2) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
272 | (1) |
|
Smooth functions with compact support |
|
|
273 | (2) |
|
Differentiability in the infinite dimensional case |
|
|
275 | (2) |
|
|
277 | (8) |
|
Identities concerning permutation symbols |
|
|
277 | (2) |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
282 | (3) |
Bibliography |
|
285 | (6) |
Index |
|
291 | |