Atnaujinkite slapukų nuostatas

El. knyga: Causal Inference in Pharmaceutical Statistics

(AbbVie, Chicago, USA)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Causal Inference in Pharmaceutical Statistics introduces the basic concepts and fundamental methods of causal inference relevant to pharmaceutical statistics. This book covers causal thinking for different types of commonly used study designs in the pharmaceutical industry, including but not limited to randomized controlled clinical trials, longitudinal studies, single-arm clinical trials with external controls, and real-world evidence studies. The book starts with the central questions in drug development and licensing, takes the reader through the basic concepts and methods via different study types and through different stages, and conclude with a roadmap to conduct causal inference in clinical studies. The book is intended for clinical statisticiansand epidemiologists working in the pharmaceutical industry. It will also be useful to graduate students in statistics, biostatistics, and data science looking to pursue a career in the pharmaceutical industry"--

Causal Inference in Pharmaceutical Statistics introduces the basic concepts and fundamental methods of causal inference relevant to pharmaceutical statistics. This book covers causal thinking for different types of commonly used study designs in the pharmaceutical industry, including but not limited to randomized controlled clinical trials, longitudinal studies, singlearm clinical trials with external controls, and real-world evidence studies. The book starts with the central questions in drug development and licensing, takes the reader through the basic concepts and methods via different study types and through different stages, and concludes with a roadmap to conduct causal inference in clinical studies. The book is intended for clinical statisticians and epidemiologists working in the pharmaceutical industry. It will also be useful to graduate students in statistics, biostatistics, and data science looking to pursue a career in the pharmaceutical industry.

Key Features:

  • Causal inference book for clinical statisticians in the pharmaceutical industry
  • Introductory level on the most important concepts and methods
  • Align with FDA and ICH guidance documents
  • Across different stages of clinical studies: plan, design, conduct, analysis, and interpretation
  • Cover a variety of commonly used study designs


Causal Inference in Pharmaceutical Statistics introduces the basic concepts and fundamental methods of causal inference relevant to pharmaceutical statistics. This book covers causal thinking for different types of commonly used study designs in the pharmaceutical industry.

Preface

1. Introduction

2. Randomized Controlled Clinical Trials

3. Missing Data Handling

4. Intercurrent Events Handling

5. Longitudinal Studies

6. Real-World Evidence Studies

7. The Art of Estimation (I): M-estimation

8. The Art of Estimation (II): TMLE

9. The Art of Estimation (III): LTMLE

10. Sensitivity Analysis

11. A Roadmap for Causal Inference

12. Applications of the Roadmap

Bibliography

Yixin Fang, Ph.D. is Director of Statistics and Research Fellow at AbbVie Inc. He obtained his Ph.D. in Statistics from Columbia University and is an experienced statistician and data scientist who has a history of working in both the biopharmaceutical industry and academia.