Atnaujinkite slapukų nuostatas

El. knyga: Cell Boundaries: How Membranes and Their Proteins Work

, , (Professor of Molecular Biophysics and Biochemistry, Yale Univeristy, USA)
  • Formatas: 564 pages
  • Išleidimo metai: 31-Dec-2021
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781000508536
Kitos knygos pagal šią temą:
  • Formatas: 564 pages
  • Išleidimo metai: 31-Dec-2021
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781000508536
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The central themes of Cell Boundaries concern the structural and organizational principles underlying cell membranes, and how these principles enable function. By building a biological and biophysical foundation for understanding the organization of lipids in bilayers and the folding, assembly, stability, and function of membrane proteins, the book aims to broaden the knowledge of bioscience students to include the basic physics and physical chemistry that inform us about membranes. In doing so, it is hoped that physics students will find familiar territory that will lead them to an interest in biology. Our progress toward understanding membranes and membrane proteins depends strongly upon the concerted use of both biology and physics. It is important for students to know not only what we know, but how we have come to know it, so Cell Boundaries endeavours to bring out the history behind the central discoveries, especially in the early chapters, where the foundation is laid for later chapters. Science is far more interesting if, as students, we can appreciate and share in the adventuresand misadventuresof discovering new scientific knowledge.

Cell Boundaries was written with advanced undergraduates and beginning graduate students in the biological and physical sciences in mind, though this textbook will likely have appeal to researchers and other academics as well.





Highlights the history of important central discoveries Early chapters lay the foundation for later chapters to build on, so knowledge is amassed High-quality line diagrams illustrate key concepts and illuminate molecular mechanisms Box features and spreads expand on topics in main text, including histories of discoveries, special techniques, and applications
List of Boxes
xi
Preface xv
Acknowledgements xvii
Chapter 0 The "E" Words: A Concise Guide to Thermodynamics
1(16)
0.1 Work, Heat, and Energy
1(1)
0.2 First Law of Thermodynamics
2(4)
0.3 Second Law of Thermodynamics
6(2)
0.4 The Second Law and Statistical Thermodynamics
8(1)
0.5 Gibbs Energy
9(1)
0.6 Chemical Potential
10(2)
0.7 Boltzmann Principle
12(1)
0.8 The Nernst Equation
12(2)
0.9 Generalized Equations of Thermodynamics
14(1)
0.10 Perspective
15(2)
Chapter 1 Foundations of Membrane Structure
17(34)
1.1 Membranes Define Cell Anatomy
17(4)
1.2 Plasma Membranes Are Composed of Surface-Active Lipids
21(10)
1.3 Lipid Bilayers Are the Fabric of Cell Membranes
31(11)
1.4 Proteins Penetrate the Membrane Bilayer and Are Mobile in the Membrane Plane
42(9)
Key Concepts
49(1)
Further Reading
49(1)
Key Literature
49(1)
Exercises
50(1)
Chapter 2 Lipid Bilayers
51(46)
2.1 Biological Membrane Lipids Spontaneously Form Bilayers
52(16)
2.2 Diffraction Methods Give Key Insights for Understanding Bilayer Structure and Membranes
68(11)
2.3 Macroscopic Descriptions of Bilayers Define Fundamental Properties of Biological Membranes
79(7)
2.4 Lipid Interactions Shape Membrane Properties
86(11)
Key Concepts
93(1)
Further Reading
94(1)
Key Literature
94(1)
Exercises
95(2)
Chapter 3 Interactions of Peptides with Lipid Bilayers
97(40)
3.1 Gibbs Partitioning Energies Provide a Foundation for Describing Lipid-Protein Interactions
98(6)
3.2 Lipid Bilayers Have Distinct Properties Compared with Bulk Organic Phases
104(8)
3.3 Charged Peptides Interact Strongly, and Predictably, with Charged Interfaces
112(7)
3.4 Membrane-active Peptides Provide Clues to Secondary Structure Formation at Membrane Interfaces
119(18)
Key Concepts
133(1)
Further Reading
134(1)
Key Literature
134(1)
Exercises
135(2)
Chapter 4 Membrane Protein Folding and Stability
137(24)
4.1 Interactions between α-Helices Are Central to 3D Structure Formation
138(6)
4.2 α-Helical Membrane Proteins Can Be Destabilized Using Heat, Detergents, and Denaturants
144(7)
4.3 β-Barrel Membrane Proteins Can Be Reversibly Unfolded Using Denaturants
151(3)
4.4 Lipid Bilayers and Membrane Proteins Adapt to Each Other
154(7)
Key Concepts
157(1)
Further Reading
157(1)
Key Literature
158(1)
Exercises
158(3)
Chapter 5 Protein Trafficking in Cells
161(34)
5.1 Translocases Mediate the Transport of Proteins across the Endoplasmic Reticulum Membrane
162(12)
5.2 Bacteria Have Many Systems for Exporting Proteins
174(7)
5.3 Proteins Are Imported into Mitochondria, Chloroplasts, and Peroxisomes
181(5)
5.4 Proteins Are Transported in and out of the Nucleus through the Nuclear Pore Complex
186(9)
Key concepts
191(1)
Further reading
191(1)
Key Literature
192(1)
Exercises
192(3)
Chapter 6 Biosynthesis and Assembly of Membrane Proteins
195(40)
6.1 Cellular Mechanisms of Membrane Protein Assembly
196(14)
6.2 Energetics of Membrane Protein Assembly
210(8)
6.3 Membrane Protein Topology
218(17)
Key Concepts
232(1)
Further Reading
232(1)
Key Literature
233(1)
Exercises
233(2)
Chapter 7 How Proteins Shape Membranes
235(30)
7.1 The Cytoskeleton Provides a Framework for Cell Shape and Vesicle Transport
236(7)
7.2 Many Different Proteins Act Together to Create Vesicular Compartments in Cells
243(8)
7.3 Surface-Binding Proteins Modulate Membrane Curvature and Cause Vesicle Scission
251(14)
Key Concepts
261(1)
Further Reading
261(3)
Exercises
264(1)
Chapter 8 Membrane Protein Bioinformatics
265(26)
8.1 Evolution of Protein Amino Acid Sequences Provides a Basis for Bioinformatics
266(7)
8.2 Prediction Methods Allow Identification of Functional and Structural Features of Membrane Proteins
273(18)
Key concepts
289(1)
Further reading
289(1)
Key literature
289(1)
Exercises
290(1)
Chapter 9 Primer on Biomolecular Structure Determination
291(30)
9.1 Microscopy and Crystallography Depend upon Diffraction and Fourier Transformation
292(6)
9.2 Electron Microscopy Is a Versatile Tool for Molecular Structure Determination
298(2)
9.3 X-Ray Crystallography Is the Mainstay of Structural Biology
300(7)
9.4 What Is the "Phase Problem," and How Do We Conquer It?
307(4)
9.5 Crystallographic Models of Proteins Are Derived from Electron Density Maps
311(2)
9.6 Electron Crystallography Is Useful for Diffraction from Small Crystals
313(8)
Key Concepts
316(1)
Further Reading
317(1)
Exercises
317(4)
Chapter 10 Small-Molecule Channels
321(34)
10.1 Water Can Cross Membranes Either by Diffusion through the Lipid Bilayer or through Channels
322(3)
10.2 Water and Other Small Molecules Move across Membranes Using Channels: Aquaporins and Aquaglyceroporins
325(4)
10.3 Aquaporin Structure Reveals Structure-Function Relationships
329(3)
10.4 Gating and Control of Aquaporin Function
332(4)
10.5 Ammonia Channels Have Many Roles across Phyla but Similar Structures
336(3)
10.6 Specialized Mechanosensitive Channels Relieve Osmotic Stress
339(12)
10.7 P-Barrels in Outer Membranes Reveal Diverse Strategies for Solute Permeation
351(4)
Key Concepts
352(1)
Further Reading
353(1)
Key Literature
353(1)
Exercises
353(2)
Chapter 11 Ion Channels
355(44)
11.1 Ionic Currents across Membranes Underlie Nerve Action Potentials
358(14)
11.2 Potassium Channels Are Highly Selective and Permit Diffusion-Limited Ion Transport
372(7)
11.3 Ligands Can Control the Opening and Closing of Channels
379(7)
11.4 Changes In Transmembrane Voltage Can Gate Channels Rapidly by Changing Charge Exposure across the Membrane Barrier
386(5)
11.5 Voltage-Gated Na Channel Mechanism and Hydrated-Ion Selection
391(2)
11.6 A Voltage-Gated Porin in the Outer Membrane of Mitochondria Controls Exchange of Metabolites with the Cytoplasm of Eukaryotes
393(2)
11.7 Conclusion
395(4)
Key Concepts
395(2)
Further Reading
397(1)
Key Literature
397(1)
Exercises
398(1)
Chapter 12 Primary Transporters: Transport against Electrical and Chemical Gradients
399(26)
12.1 P-Type ATPases
400(8)
12.2 The Transport Principles of ABC Transporters Differ from Those of the P-Type ATPases
408(12)
12.3 Energy-Coupling Factor Transporters Couple ATP Hydrolysis to "Toppling" of the Substrate-Binding Subunit
420(5)
Key Concepts
422(1)
Further Reading
422(1)
Key Literature
422(1)
Exercises
422(3)
Chapter 13 Secondary Transport
425(36)
13.1 Requirements for Secondary Transporters
430(3)
13.2 Rocker-Switch Transporters: Major Facilitator Superfamily (MFS) Symporters
433(5)
13.3 Rocking-Bundle Transporters: Neurotransmitter Sodium Symporters
438(10)
13.4 Elevator-Like Transporters: Structural Studies of a Glutamate Transporter, Gltph, Reveal Similar Principles
448(4)
13.5 The ADP/ATP Transporter from Mitochondria
452(3)
13.6 Uniporters (aka Facilitators) Facilitate Transport without Chemical Gradients
455(2)
13.7 Conclusion
457(4)
Key Concepts
457(1)
Further Reading
458(1)
Key Literature
458(1)
Exercises
458(3)
Chapter 14 Bioenergetics
461(30)
14.1 The Chemiosmotic Theory Is the Foundation of Bioenergetics
462(7)
14.2 Electrons Move along a Chain of Protein Complexes
469(6)
14.3 ATP Synthase Produces ATP Using the Proton Gradient
475(6)
14.4 Photosynthesis Harvests Light to Produce Oxygen
481(10)
Key Concepts
489(1)
Further Reading
489(1)
Key Literature
489(1)
Exercises
490(1)
Chapter 15 Information Transfer: Signaling in Cells
491(40)
15.1 Bacteria Sense Their Environment by Two-Component Signaling Systems
491(9)
15.2 Eukaryotic Cells Coordinate Their Interactions Using Receptor Tyrosine Kinases
500(8)
15.3 G Protein Receptors Transmit Signals across the Plasma Membrane in Response to Hormones and Other Compounds
508(14)
15.4 Cadherins and Integrins Mediate Mechanical Interactions with Neighboring Cells and the Extracellular Matrix
522(9)
Key Concepts
528(1)
Further Reading
528(1)
Key Literature
528(2)
Exercises
530(1)
Electrostatics Appendix 531(6)
Index 537
Stephen H. White is Professor of Physiology and Biophysics at University of California at Irvine.

Gunnar von Heijne is Professor in Biochemistry and Biophysics at Stockholm University.

Donald M. Engelman is Eugene Higgins Professor of Molecular Biophysics and Biochemistry at Yale University.