Atnaujinkite slapukų nuostatas

Centenary of the Borel Conjecture [Minkštas viršelis]

Edited by , Edited by
  • Formatas: Paperback / softback, 242 pages, weight: 460 g
  • Serija: Contemporary Mathematics
  • Išleidimo metai: 30-Jan-2021
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470450992
  • ISBN-13: 9781470450991
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 242 pages, weight: 460 g
  • Serija: Contemporary Mathematics
  • Išleidimo metai: 30-Jan-2021
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470450992
  • ISBN-13: 9781470450991
Kitos knygos pagal šią temą:
Borels Conjecture entered the mathematics arena in 1919 as an innocuous remark about sets of real numbers in the context of a new covering property introduced by Émile Borel. In the 100 years since, this conjecture has led to a remarkably rich adventure of discovery in mathematics, producing independent results and the discovery of countable support iterated forcing, developments in infinitary game theory, deep connections with infinitary Ramsey Theory, and significant impact on the study of topological groups and topological covering properties.

The papers in this volume present a broad introduction to the frontiers of research that has been spurred on by Borels 1919 conjecture and identify fundamental unanswered research problems in the field. Philosophers of science and historians of mathematics can glean from this collection some of the typical trends in the discovery, innovation, and development of mathematical theories.
Preface vii
Game-theoretical aspects of the Borel conjecture
1(36)
Leandro F. Aurichi
Rodrigo R. Dias
Strong measure zero in Polish groups
37(32)
Michael Hrusak
Ondrej Zindulka
Ramsey theory and the Borel conjecture
69(46)
Marion Scheepers
On the algebraic union of strongly measure zero sets and their relatives with sets of real numbers
115(20)
Tomasz Weiss
Borel conjecture, dual Borel conjecture, and other variants of the Borel conjecture
135(94)
Wolfgang Wohofsky
Selection principles in the Laver, Miller, and Sacks models
229
Lyubomyr Zdomskyy
Marion Scheepers, Boise State University, OH.

Ondrej Zindulka, Czech Technical University, Prague, Czech Republic