Atnaujinkite slapukų nuostatas

Central Simple Algebras and Galois Cohomology [Kietas viršelis]

(Hungarian Academy of Sciences, Budapest), (Centre National de la Recherche Scientifique (CNRS), Paris)
  • Formatas: Hardback, 356 pages, aukštis x plotis x storis: 236x158x22 mm, weight: 695 g, Worked examples or Exercises
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 10-Aug-2006
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521861039
  • ISBN-13: 9780521861038
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 356 pages, aukštis x plotis x storis: 236x158x22 mm, weight: 695 g, Worked examples or Exercises
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 10-Aug-2006
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521861039
  • ISBN-13: 9780521861038
Kitos knygos pagal šią temą:
The first modern, comprehensive introduction to central simple algebras for graduate students and researchers.

This book is the first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields. Starting from the basics, it reaches such advanced results as the Merkurjev-Suslin theorem. This theorem is both the culmination of work initiated by Brauer, Noether, Hasse and Albert and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, but no homological algebra, the book covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi-Brauer varieties, residue maps and, finally, Milnor K-theory and K-cohomology. The last chapter rounds off the theory by presenting the results in positive characteristic, including the theorem of Bloch-Gabber-Kato. The book is suitable as a textbook for graduate students and as a reference for researchers working in algebra, algebraic geometry or K-theory.

Recenzijos

'The presentation of material is reader-friendly, arguments are clear and concise, exercises at the end of every chapter are original and stimulating, the appendix containing some basic notions from algebra and algebraic geometry is helpful. To sum up, the book under review can be strongly recommended to everyone interested in the topic.' Zentralblatt MATH

Daugiau informacijos

The first modern, comprehensive introduction to central simple algebras for graduate students and researchers.
Preface xi
Acknowledgments xii
1 Quaternion algebras 1(16)
1.1 Basic properties
1(3)
1.2 Splitting over a quadratic extension
4(3)
1.3 The associated conic
7(2)
1.4 A theorem of Witt
9(3)
1.5 Tensor products of quaternion algebras
12(5)
2 Central simple algebras and Galois descent 17(33)
2.1 Wedderburn's theorem
17(3)
2.2 Splitting fields
20(4)
2.3 Galois descent
24(5)
2.4 The Brauer group
29(4)
2.5 Cyclic algebras
33(4)
2.6 Reduced norms and traces
37(3)
2.7 A basic exact sequence
40(2)
2.8 K1 of central simple algebras
42(8)
3 Techniques from group cohomology 50(30)
3.1 Definition of cohomology groups
50(6)
3.2 Explicit resolutions
56(4)
3.3 Relation to subgroups
60(8)
3.4 Cup-products
68(12)
4 The cohomological Brauer group 80(34)
4.1 Profinite groups and Galois groups
80(5)
4.2 Cohomology of profinite groups
85(5)
4.3 The cohomology exact sequence
90(5)
4.4 The Brauer group revisited
95(5)
4.5 Index and period
100(6)
4.6 The Galois symbol
106(3)
4.7 Cyclic algebras and symbols
109(5)
5 Severi-Brauer varieties 114(21)
5.1 Basic properties
115(2)
5.2 Classification by Galois cohomology
117(3)
5.3 Geometric Brauer equivalence
120(5)
5.4 Amitsur's theorem
125(6)
5.5 An application: making central simple algebras cyclic
131(4)
6 Residue maps 135(48)
6.1 Cohomological dimension
135(5)
6.2 C1-fields
140(6)
6.3 Cohomology of Laurent series fields
146(5)
6.4 Cohomology of function fields of curves
151(6)
6.5 Application to class field theory
157(3)
6.6 Application to the rationality problem: the method
160(7)
6.7 Application to the rationality problem: the example
167(4)
6.8 Residue maps with finite coefficients
171(5)
6.9 The Faddeev sequence with finite coefficients
176(7)
7 Milnor K-theory 183(40)
7.1 The tame symbol
183(6)
7.2 Milnor's exact sequence and the Bass-Tate lemma
189(6)
7.3 The norm map
195(9)
7.4 Reciprocity laws
204(6)
7.5 Applications to the Galois symbol
210(5)
7.6 The Galois symbol over number fields
215(8)
8 The Merkurjev-Suslin theorem 223(36)
8.1 Gersten complexes in Milnor K-theory
223(4)
8.2 Properties of Gersten complexes
227(5)
8.3 A property of Severi-Brauer varieties
232(6)
8.4 Hilbert's Theorem 90 for K2
238(7)
8.5 The Merkurjev-Suslin theorem: a special case
245(5)
8.6 The Merkurjev-Suslin theorem: the general case
250(9)
9 Symbols in positive characteristic 259(39)
9.1 The theorems of Teichmfiller and Albert
259(7)
9.2 Differential forms and p-torsion in the Brauer group
266(3)
9.3 Logarithmic differentials and flat p-connections
269(7)
9.4 Decomposition of the de Rham complex
276(3)
9.5 The Bloch-Gabber-Kato theorem: statement and reductions
279(3)
9.6 Surjectivity of the differential symbol
282(6)
9.7 Injectivity of the differential symbol
288(10)
Appendix: A breviary of algebraic geometry 298(25)
A.1 Affine and projective varieties
298(2)
A.2 Maps between varieties
300(2)
A.3 Function fields and dimension
302(3)
A.4 Divisors
305(3)
A.5 Complete local rings
308(2)
A.6 Discrete valuations
310(4)
A.7 Derivations
314(4)
A.8 Differential forms
318(5)
Bibliography 323(16)
Index 339


Philippe Gille is Chargé de Recherches, CNRS, Université de Paris-Sud, Orsay. Tamįs Szamuely is Senior Research Fellow, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest.