Atnaujinkite slapukų nuostatas

El. knyga: Chaos on the Interval

  • Formatas: 215 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 03-Feb-2017
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470437596
Kitos knygos pagal šią temą:
  • Formatas: 215 pages
  • Serija: University Lecture Series
  • Išleidimo metai: 03-Feb-2017
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470437596
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the most interesting part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one.

Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gives complete proofs and addresses both graduate students and researchers.
Preface vii
Contents of the book ix
Chapter 1 Notation and basic tools
1(10)
1.1 General notation
1(1)
1.2 Topological dynamical systems, orbits, ω-limit sets
1(3)
1.3 Intervals, interval maps
4(3)
1.4 Chains of intervals and periodic points
7(2)
1.5 Directed graphs
9(2)
Chapter 2 Links between transitivity, mixing and sensitivity
11(22)
2.1 Transitivity and mixing
11(10)
2.2 Accessible endpoints and mixing
21(4)
2.3 Sensitivity to initial conditions
25(8)
Chapter 3 Periodic points
33(24)
3.1 Specification
33(3)
3.2 Periodic points and transitivity
36(5)
3.3 Sharkovsky's Theorem, Sharkovsky's order and type
41(11)
3.4 Relations between types and horseshoes
52(3)
3.5 Types of transitive and mixing maps
55(2)
Chapter 4 Topological entropy
57(52)
4.1 Definitions
57(2)
4.2 Entropy and horseshoes
59(7)
4.3 Homoclinic points
66(7)
4.4 Upper bounds for entropy of Lipschitz and piecewise monotone maps
73(3)
4.5 Graph associated to a family of intervals
76(8)
4.6 Entropy and periodic points
84(9)
4.7 Entropy of transitive and topologically mixing maps
93(12)
4.8 Uniformly positive entropy
105(4)
Chapter 5 Chaos in the sense of Li-Yorke, scrambled sets
109(46)
5.1 Definitions
109(2)
5.2 Weakly mixing maps are Li-Yorke chaotic
111(2)
5.3 Positive entropy maps are Li-Yorke chaotic
113(4)
5.4 Zero entropy maps
117(14)
5.5 One Li-Yorke pair implies chaos in the sense of Li-Yorke
131(2)
5.6 Topological sequence entropy
133(12)
5.7 Examples of maps of type 2∞, Li-Yorke chaotic or not
145(10)
Chapter 6 Other notions related to Li-Yorke pairs: Generic and dense chaos, distributional chaos
155(20)
6.1 Generic and dense chaos
155(13)
6.2 Distributional chaos
168(7)
Chapter 7 Chaotic subsystems
175(16)
7.1 Subsystems chaotic in the sense of Devaney
175(2)
7.2 Topologically mixing subsystems
177(3)
7.3 Transitive sensitive subsystems
180(11)
Chapter 8 Appendix: Some background in topology
191(12)
8.1 Complement of a set, product, of sets
191(1)
8.2 Definitions in topology
191(3)
8.3 Topology derived from the topology on X
194(1)
8.4 Connectedness, intervals
195(1)
8.5 Compactness
196(1)
8.6 Cantor set
197(2)
8.7 Continuous maps
199(2)
8.8 Zorn's Lemma
201(2)
Bibliography 203(8)
Notation 211(2)
Index 213
Sylvie Ruette, Universite Paris-Sud, Orsay, France.