Atnaujinkite slapukų nuostatas

El. knyga: Chaotic Dna Dynamics

(Indian Inst Of Tropical Meteorology, India)
  • Formatas: 244 pages
  • Išleidimo metai: 30-May-2022
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811243257
Kitos knygos pagal šią temą:
  • Formatas: 244 pages
  • Išleidimo metai: 30-May-2022
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811243257
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This introductory compendium teaches engineering students how the most common electronic sensors and actuators work. It distinguishes from other books by including the physical and chemical phenomena used as well as the features and specifications of many sensors and actuators. The useful reference text also contains an introductory chapter that deals with their specifications and classification, a chapter about sensor and actuator networks, and a special topic dealing with the fabrication of sensors and actuators using microelectromechanical systems techniques (sensors and actuators on a chip). A set of exercises and six laboratory projects are highlighted.



"A general systems theory model predicts quasiperiodic Penrose tiling pattern for the nested coiled structure of the DNA molecule in the chromosome resulting in maximum packing efficiency and unified whole fuzzy logic network architecture with ordered two-way signal transmission between the coding and non-coding (junk DNA) regions. Junk DNA are not redundant. Modification of the DNA base sequence structure at any location may have significant noticeable effects on the function of the DNA molecule as a whole. This book helps us understand the cooperative existence of individual components for optimum performance of the system"--
Preface vii
Chapter 1 Universal Characteristics of Fractal Fluctuations: General Systems Theory
1(36)
1.1 Introduction
1(3)
1.2 Statistical Methods for Data Analysis
4(6)
1.2.1 Statistical normal distribution
4(2)
1.2.2 Fractal fluctuations and statistical analysis
6(1)
1.2.2.1 Power-laws and fat tails
7(1)
1.2.2.2 Scale-free theory for power-laws with fat, long tails
8(2)
1.3 General Systems Theory for Fractal Fluctuations
10(10)
1.3.1 Dynamic memory (information) circulation network
12(1)
1.3.2 Quasicrystalline structure of the eddy continuum
13(3)
1.3.3 Model predictions
16(1)
1.3.3.1 Quasiperiodic Penrose tiling pattern
16(1)
1.3.3.2 Eddy continuum
17(1)
1.3.3.3 Dominant eddies
17(1)
1.3.3.4 Berry's phase in quantum systems
18(1)
1.3.3.5 Logarithmic spiral pattern underlying fractal fluctuation
18(2)
1.4 Universal Feigenbaum's Constants and Probability Density Distribution Function for Fractal Fluctuations
20(17)
1.4.1 Same inverse power-law for probability distribution and power spectra of fractal fluctuations
24(1)
1.4.2 Inverse power-law for fractal fluctuations close to Gaussian distribution
25(2)
1.4.3 Fat long tail for probability distribution of fractal fluctuations
27(1)
1.4.4 Power spectra of fractal fluctuations
28(3)
Acknowledgement
31(1)
References
31(6)
Chapter 2 Nonlinear Dynamics, Chaos and Self-organized Criticality
37(22)
2.1 Introduction
37(5)
2.2 The DNA Molecule and Heredity
42(1)
2.3 Junk DNA
43(2)
2.4 Long-Range Correlations in DNA Base Sequence
45(3)
2.5 Emergence of Order and Coherence in Biology
48(1)
2.6 Multidisciplinary Approach for Modelling Biological Complexity
48(1)
2.7 Fractal Fluctuations and Statistical Normal Distribution
49(10)
Acknowledgement
50(1)
References
50(9)
Chapter 3 Long-Range Correlations Data 1: Universal Spectrum for DNA Base C+G Frequency Distribution in Human Chromosomes 1--24
59(24)
3.1 Introduction
59(2)
3.2 General Systems Theory Concepts
61(6)
3.2.1 Quantum-like chaos in turbulent fluid flows
61(1)
3.2.2 Dynamic memory (information) circulation network
61(1)
3.2.3 Quasicrystalline structure
62(1)
3.2.4 Dominant periodicities
63(1)
3.2.4.1 Emergence of order and coherence in biology
64(1)
3.2.5 Long-range spatiotemporal correlations (coherence)
65(1)
3.2.6 Universal spectrum of fluctuations
65(1)
3.2.7 Quantum mechanics for subatomic dynamics: Apparent paradoxes
66(1)
3.2.7.1 Wave-particle duality
66(1)
3.2.7.2 Non-local connection
66(1)
3.3 Applications of the General Systems Theory Concepts to Genomic DNA Base Sequence Structure
67(2)
3.4 Data and Analysis
69(5)
3.4.1 Data
69(1)
3.4.2 Power spectral analyses: Variance and phase spectra
69(2)
3.4.3 Power spectral analyses: Dominant periodicities
71(1)
3.4.3.1 Peak wavelength versus bandwidth
72(2)
3.5 Discussions
74(3)
3.6 Conclusions
77(6)
Acknowledgement
78(1)
References
78(5)
Chapter 4 Quantum-like Chaos in the Frequency Distributions of Bases A, C, G, T in Human Chromosome 1 DNA
83(12)
4.1 Introduction
83(1)
4.2 Model Concepts
84(2)
4.3 Data and Analyses
86(3)
4.4 Results and Conclusions
89(6)
Acknowledgement
90(1)
References
90(5)
Chapter 5 Universal Spectrum for DNA Base C+G Concentration Variability in Human Chromosome Y
95(28)
5.1 Introduction
95(8)
5.1.1 General systems theory concepts
98(1)
5.1.2 Quantum-like chaos in turbulent fluid flows
98(1)
5.1.3 Dynamic memory (information) circulation network
98(1)
5.1.4 Quasi-crystalline structure
99(1)
5.1.5 Dominant periodicities
100(2)
5.1.5.1 Emergence of order and coherence in biology
102(1)
5.2 Long-Range Spatiotemporal Correlations (Coherence)
103(1)
5.3 Universal Spectrum of Fluctuations
104(1)
5.4 Quantum Mechanics for Subatomic Dynamics: Apparent Paradoxes
104(2)
5.4.1 Wave-particle duality
104(1)
5.4.2 Non-local connection
105(1)
5.5 Self-Organized Criticality and Quantum-Like Chaos in Computed Model Dynamical Systems
106(2)
5.5.1 Deterministic chaos
106(1)
5.5.2 Universal quantification for deterministic chaos in dynamical systems
107(1)
5.5.3 Universal algorithm for quasi-crystalline structure formation in real world and computed model dynamical systems
107(1)
5.6 Applications of the General Systems Theory Concepts to Genomic DNA Base Sequence Structure
108(2)
5.7 Data and Analysis
110(2)
5.7.1 Data
110(1)
5.7.2 Power spectral analyses: Variance and phase spectra
111(1)
5.7.3 Power spectral analyses: Dominant periodicities
111(1)
5.8 Discussions
112(3)
5.9 Conclusions
115(8)
Acknowledgement
116(1)
References
116(7)
Chapter 6 Quantum-like Chaos in the Frequency Distributions of the Bases A, C, G, T in Drosophila DNA
123(40)
6.1 Introduction
123(8)
6.1.1 The DNA molecule and heredity
123(2)
6.1.2 Long-range correlations in DNA base sequence
125(3)
6.1.3 Nonlinear dynamics and chaos
128(3)
6.2 General Systems Theory for Universal Quantification of Fractal Fluctuations of Dynamical Systems
131(4)
6.3 Data and Analysis
135(13)
6.3.1 Fractal nature of frequency distribution of Drosophila DNA base (A, C, G or T) sequence
136(1)
6.3.2 The frequency distributions of DNA bases A, C, G, T and the statistical normal distribution
137(2)
6.3.3 Continuous periodogram power spectral analyses
139(1)
6.3.4 Power spectral analyses: Summary of results
140(1)
6.3.4.1 Average variance and phase spectra
140(1)
6.3.4.2 Dominant wavebands
140(2)
6.3.4.3 Peak wavelength versus bandwidth
142(6)
6.4 Results and Discussion
148(3)
6.5 Conclusions
151(12)
Acknowledgement
154(1)
References
154(9)
Chapter 7 Long-Range Correlations Data Set V: Universal Spectrum for DNA Base CG Frequency Distribution in Takifugu Rubripes (Puffer fish) Genome
163(38)
7.1 Introduction
163(2)
7.1.1 Fractal fluctuations and statistical normal distribution
164(1)
7.2 Multidisciplinary Approach for Modelling Biological Complexity
165(10)
7.2.1 General systems theory for fractal fluctuations in dynamical systems
166(3)
7.2.2 Fractals represent hierarchical communication networks
169(1)
7.2.3 Model predictions (relevance of model predictions to biological networks)
170(1)
7.2.3.1 Quasicrystalline pattern for the network architecture
170(1)
7.2.3.2 Long-range spatiotemporal correlations (coherence)
171(1)
7.2.3.3 Emergence of order and coherence in biology
172(1)
7.2.3.4 Dominant length scales in the quasicrystalline spatial pattern
172(1)
7.2.3.5 DNA sequence and functions
173(2)
7.3 Data and Analysis
175(1)
7.3.1 Data
175(1)
7.3.2 Power spectral analyses: Variance and phase spectra
175(1)
7.4 Results and Discussion
176(9)
7.4.1 Data sets and power spectral analyses
176(3)
7.4.2 Model predicted dominant wavebands
179(3)
7.4.3 Peak wavelength versus bandwidth
182(1)
7.4.4 Quasiperiodic Penrose tiling and packing efficiency
183(2)
7.5 Current Status of Basic Concepts in Quantum Mechanics
185(9)
7.5.1 Fractals and quantum theory
186(2)
7.5.2 Quantum mechanics and string theory
188(1)
7.5.3 Fluid mechanics and quantum mechanics
189(1)
7.5.4 General systems theory for fractal space-time fluctuations and quantum-like chaos in atmospheric flows
189(2)
7.5.5 Model predictions and the interpretation of quantum mechanical laws
191(1)
7.5.5.1 Probability and amplitude square: Probability of weather sy stem
191(1)
7.5.5.2 Non-local connection in weather systems
192(2)
7.5.5.3 Non-local connection in quantum systems
194(1)
7.6 Conclusions
194(7)
Acknowledgement
195(1)
References
195(6)
Chapter 8 Long-Range Correlations in Human Chromosome X DNA Base CG Frequency Distribution: Data Set VI
201(10)
8.1 Introduction
201(4)
8.1.1 Model Concepts
203(2)
8.2 Data and Analysis
205(3)
8.3 Results and Conclusions
208(3)
Acknowledgement
209(1)
References
209(2)
Appendix 211(2)
Index 213